В.П. ДЬЯКОНОВ

РАСЧЕТ НЕЛИНЕЙНЫХ И ИМПУЛЬСНЫХ УСТРОЙСТВ НА ПРОГРАММИРУЕМЫХ МИКРОКАЛЬКУЛЯТОРАХ

Справочное пособие

МОСКВА «РАДИО И СВЯЗЬ» 1984

ББК 32.847. Д93

УДК 621.374:681.321.0(035)

Дьяконов В. П.

Расчет нелинейных и импульсных устройств на Д93 программируемых микрокалькуляторах: Справ. пособие. — М.: Радио и связь, 1984. — 176 с., ил.

Описаны расчеты на микро-ЭВМ индивидуального пользования нелипейных и импульсных устройств на современных полупроводниковых приборах и интегральных микросхемах. Дается программная реализация таких расчетов на программируемых микрокалькуляторах «Электроника БЗ-21», «Электроника БЗ-34», «Электроника МК-54», «Электроника МК-46», «Электроника МК-56» и настольной микро-ЭВМ «Электроника ДЗ-28». Приведено свыше 170 программ конкретных расчетов на этих ЭВМ. Для широкого круга инженерно-технических работников.

Д
$$\frac{2402020000-015}{046(01)-84}$$
123-84

ББК 32.847 6Ф2

РЕЦЕНЗЕНТЫ: ДОКТОР ТЕХН. НАУК ПРОФЕССОР Л. Я. НАГОРНЫЙ, КАПД. ТЕХП. НАУК А. Я. АРХАНГЕЛЬСКИЙ

Редакция литературы по кибернетике и вычислительной технике

Владимир Павлович Дьяконов

РАСЧЕТ НЕЛИНЕЙНЫХ И ИМПУЛЬСНЫХ УСТРОЙСТВ НА ПРОГРАММИРУЕМЫХ МИКРОКАЛЬКУЛЯТОРАХ

Редактор И. И. Рюжина Обложка художника Г. С. Студеникиной Художественный редактор Н. С. Шенн Технический редактор Г. И. Колосова Корректор А. Д. Халанская

ИБ № 621

Сдано в набор 27.05 83. Подписано в печать 9.04.84. T-08539 Слано в настор 27.05 од. Подписано в басто достой достой

Издательство «Радио и связь». 101000 Москва, Почтамт, а/я 693

Московская типография № 4 Союзполиграфпрома при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли 129041. Москва, Б. Переяславская ул., 46

ПРЕДИСЛОВИЕ

С помощью микро-ЭВМ индивидуального пользования можно решать множество учебных, инженерных и научных задач, высвобождая дорогостоящее машиное время больших ЭВМ для решения задач особо большой сложности [1, 2]. Описанные в зарубежной литературе программы непригодны для пользователей отечественных микро-ЭВМ из-за сильного различия символики клавиатуры, языков программирования и функциональных возможностей различных моделей микро-ЭВМ.

В данной книге впервые дается систематизированное изложение теории и практики технических расчетов на микро-ЭВМ нелинейных и импульеных устройств, построенных на современных полупроводниковых приборах и интегральных микросхемах. Особое внимание уделено программной реализации важнейших методов расчета этих устройств, иллюстрированной большим числом конкретных примеров. Описано свыше 170 программ для программируемых микрокалькуляторов «Электроника БЗ-21», «Электроника БЗ-34», их аналогов и настольной микро-ЭВМ «Электроника Д3-28» с более высоким быстродействием и большими функциональными возможностями, чем у микрокалькуляторов. Программы записаны построчно, как в [2, 3], причем число под их номером указывает на тип микро-ЭВМ. Так как расчеты базируются на электрофизических моделях активных приборов, используется система физических параметров последних. Многополюсники, RC- и активные фильтры, малосигнальные усилители (кроме импульсных) не рассматриваются, поскольку они детально описаны в работе Я. К. Трохименко н Ф. Д. Любича «Радиотехнические расчеты на микрокалькуляторах» [3].

Книга рассчитана на широкий круг читателей, инженеров и научных работников, она может быть полезной студентам вузов и техникумов.

Автор выражает глубокую благодарность докторам техн. наук профессорам Я. С. Ицхоки, Л. Я. Нагорному, Я. К. Трохименко, кандидатам техн. наук доцентам А. Я. Архангельскому, Ф. Д. Любичу и И. Г. Недолужко за полезные советы по улучшению книги. Отзывы и пожелания следует направлять по адресу: 101000, Москва, Почтамт, а/я 693, изд-во «Радио и связь».

ГЛАВА 1

ТЕХНИЧЕСКИЕ ДАННЫЕ И ПРОГРАММИРОВАНИЕ МИКРОКАЛЬКУЛЯТОРОВ И МИКРО-ЭВМ

1.1. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОГРАММИРУЕМЫХ МИКРОКАЛЬКУЛЯТОРОВ И МИКРО-ЭВМ

В микро-ЭВМ индивидуального пользования предусмотрен простой ввод данных и программы с клавишного пульта (поэтому такие ЭВМ иногда называют электронными клавишными вычислительными машинами — ЭКВМ). В наиболее совершенных микро-ЭВМ этого класса ввод данных и программы возможен с внешних периферийных устройств, а также с встроенного магнитофона [4, 5].

Основные технические характеристики ряда отечественных микро-ЭВМ индивидуального пользования приведены в табл. 1.1 Микрокалькулятор «Электроника БЗ-21» прост в эксплуатации. Его удобно применять при выполнении операций над комплексными числами. Для этого в нем предусмотрено вычисление функции $e^{ix} = (\cos x + i \sin x)$ одной операцией. Недостатком последнего является отсутствие микропрограмм вычисления ряда широкораспространенным функций (см. табл. 1.1). Этого недостатка нет у более совершенного микрокальгулятора «Электроника БЗ-34». Настольные микрокалькуляторы «Электроника МК-56» разработаны на базе двух упомянутых микрозалькуляторов, программно совместимы с вими и аналогичны по функциональным возможностям. У модели «Электроника МК-46» предусмотрена возможность свода данных с внешних устройств.

Микрокалькуляторы «Электроника МК-54» по своим возможностям аналогичны базовой модели «Электроника БЗ-34». У них добавлено представление углов в десятичных градусах — градах, уменьшены габаритные размеры и масса. Символы у ряда машин на клавищах даны на английском языке, что облег-

ч. ет перевод для них программ, описанных в зарубежной литературе.

Настольная микро-ЭВМ индивидуального и коллективного (при наличии досолектельных пультов управления) пользования «Электроника ДЗ-28» намного превосходит микрокалькуляторы по быстродействию и числу ячеек памяти, допускает работу с развитым периферийным оборудованием: перфораторами, фотосчитывателями, дисплеями, пишушими машинками и т. д. Данная микро-ЭВМ снабжена встроенным цифровым кассетным магнитофоном для записи и считывания программ, вводимых данных и результатов вычислений. В то же время ирограммирование этой микро-ЭВМ почти не отличается от программирования микрокалькуляторов*. С микро-ЭВМ «Электроника ДЗ-28» программно совместимы микро-ЭВМ «15ВСМ-5» [5].

Некоторые вычисления на упомянутых микро-ЭВМ могут выполняться при ручном управлении. Однако основным режимом их работы являются вычисления в автоматическом режиме по введенной программе. Последовательность нажатий клавиш пульта при вводе программы почти повторяет таковую при вычислениях «вручную». Поэтому в дальнейшем описываются только вычисления в автоматическом режиме для рассмотренных микро-ЭВМ с символьно-кодовым программи-

рованием.

1.2. О ПРОГРАММИРОВАНИИ МИКРО-ЭВМ

Рассмотрим основные понятия о программировании микрокалькуляторов «Электроника БЗ-21», «Электроника БЗ-34» и микро-ЭВМ «Электроника ДЗ-28».

^{*} На базе микро-ЭВМ «Электроника ДЗ-28» выпускается вычислительная микросистема с программированием на языке более высокого уровия БЕЙСИК.

Технические характеристики микро-ЭВМ индивидуального пользования

			Элек	троника		
Тип микро-ЭВМ	Б3-21	MK-46	Б3-34	MK-56	MK-54	Д3-28
Число разрядов мантиссы-по- рядка	7,8/2	7,8/2	8/2	8/2	8/2	12/2
Число регистров операционно- го блока	2	2	4	4	4	2
Наличие регистра восстанов- ления результата предшествую- щей операции	Нет	Нет	Есть	Есть	Есть	Нет
Число добавочных регистров (ячеек) памяти	6+стек на 6 чисел	6+стек на 6 чисел	14	14	14	16 6 с набором с пульта
Максимальное число шагов программы	60	66	98	98	98	32 512 при ОЗУ 32кбайт
Вычисление функций x : $1/x$, x^2 , \sqrt{x} , e^x , $\ln x$. $\sin x$. $\cos x$	Есть	Есть	Есть	Есть	Есть	Есть
Вычисление функций x : $tg x$, arc $sin x$, arc $sin x$, arc $tg x$, $tg x$, $tg x$	Нет	Нет	Есть	Есть	Есть	Есть
Представление углов	Радианы	Радианы	Радианы, градусы	Радианы, градусы, грады*)	Радианы, градусы, грады*)	Радианы, градусы
Адресация	Прямая	Прямая	Прямая и косвенная	Прямая и косвенная	Прямая и косвенная	Прямая я косвенная
Время выполнения арифметических операций, не более, с	0,5	0,5	0,5	0,5	0,5	0,0005
Габаритные размеры, мм Масса, кг	$185 \times 100 \times 48$ 0.39	$280\times240\times90 \ 2.5$	185×100×45 0,39	$208 \times 205 \times 60$ 1,3	167×78×36 0,25	580×480×180 25
Питание Оформление	Универсальное Переносное	Сетевое Настольное	Универсальное Переносное	Сетевое Настольное	Универсальное Переносное	Сетевое Настольное

^{*)} і град — градусная мера, равная 1/100 части прямого угла.

1. ред ставление чисел и их ввод. Числа, большие 1 и меньшие 10^{μ} , где p — число разрядов индикатора, представляются в естественной форме с фиксированной запятой, например 1234 или 12,345 и т. п. Числа, меньшие 1 и большие 10^{μ} , представляются в экспоненциальной форме с плавающей запятой

$$x = \pm M \cdot 10^{\pm E},$$

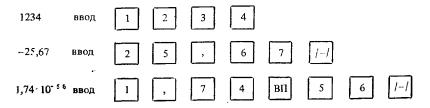
где $M \to$ нормализованная мантисса с первым знаком 0 или в виде целого числа от 1 до 9: $E \to$ порядок (целое число до 99). Например, число $423 \cdot 10^{-12}$ при нормализации приобретает вид $0.423 \cdot 10^{-9}$ или $4.23 \cdot 10^{-10}$.

Конечное число разрядов ЭВМ ограничивает диапазон чисел обычно от $x_{\text{миц}} = 1 \cdot 10^{-99}$ до $x_{\text{макс}} = 9,999999 \cdot 10^{99}$ у микрокалькуляторов «Электроника БЗ-21», 9,9999999 \cdot $\cdot 10^{99}$ у микрокалькуляторов «Электроника БЗ-34» и 9,999999999 \cdot $\cdot 10^{99}$ у микро-ЭВМ «Электроника ДЗ-28».

Числа, большие $x_{\text{макс}}$, относятся к машинной бесконечности и ведут к переполнению операционных регистров (см. далее). Числа, меньшие $x_{\text{мин}}$, воспри-

нимаются ЭВМ как 0 и относятся к области машинного нуля.

Ввод чисел осуществляется с помощью цифровых клавиш пульта 0,1 ... 9, клавиши запятой, клавиши ввода порядка (ВП или Е) и клавиши смены знака мантиссы и порядка (/—/ или ЗН), например:



У микро-ЭВМ «Электроника ДЗ-28» нуль мантиссы можно не вводиты

Операционные регистры. В общем случае элементарная двухместная операция выполняется над двумя числами и и, называемыми операндами. Для ввода их в микро-ЭВМ служат два операционных регистра X и Y. В один из ни заносится результат операции. В микрокалькуляторах «Электроника БЗ-34» и «Электроника МК-56» используется стековый блок из четырех операционных регистров и дополнительного регистра восстановления результата предшествующей операции, что позволяет реализовать в блоке сложные вычисления. Элементарные одноместные операции выполняются над числами, вводимыми в регистр X, в него поступает и их результат. Регистр X снабжен индикатором (в микро-ЭВМ «Электроника ДЗ-28» предусмотрена индикация чисел, имеющихся и в регистре Y).

Дополиительные регистры (ячейки) памяти и обращение к ним. Для хранения исходных данных и промежуточных результатов вычислений используются дополнительные десятичные регистры (ячейки) памяти, обозначенные буквами Р или ЯП. Они имеют определенные номера (адреса), обозначенные цифрами, например второй регистр обозначестя Р2 в микрокалькуляторах и ЯП 0002 в микро-ЭВМ «Электроника ДЗ-28». Обращение к регистрам или их адресация производятся, если число х надо записать в регистр или вызвать это число из последнего в регистр X.

Запись чисел в регистры осуществляется командой с символом Р, П или ЗП с последующим указанием адреса регистра. Например, число 12 в регистр 2

ваписывается вводом символов:

 1
 2
 Р
 2
 у микрокалькулятора "Электроника БЗ – 21",

 1
 2
 П
 2
 у микрокалькулятора "Электроника БЗ – 34",

 1
 2
 ЗП
 00
 02
 у микро-ЗВМ "Электроника ДЗ – 28".

Вызов чисел из регистров производится командой с символом F, ИП или

или ВП 00 02 для указанных выше типов ЭВМ.

Обращение к регистрам может выполняться как вручную, так и по программе, Ввод числа x в регистр с номером N схематично обозначается как $x=\Pi N$ или $x=\Pi N$

Программа вычислений, символьно-кодовое программирование. Последовательность команд, заданных ЭВМ и выполняемых ею, называется программой. Простейшне программы являются линейными, т. е. все их команды выполняются строго последовательно по одной встви. У разветвляющихся программ вычисления пронсходят по нескольким ветвям, например в зависимости от комбинации исходных данных. В циклических программах их определенные фрагменты многократно повторяются заданное число раз или до тех пор, пока не будет получен результат с заданной точностью.

Каждая команда имеет свой код в виде числа или особого знака. В режиме ввода программы или при ее пошаговой проверке коды выводятся на индикатор. Однако коды неудобны для запоминания пользователем. Поэтому в микро-ЭВМ с символьно-кодовым программированием каждая команда (операция) вводится соответствующим понятным и легко запоминающимся символом Например, для ввода операции ех в микрокалькуляторе «Электроника БЗ-21» достаточно нажать клавищи Р и ех. Микрокалькулятор преобразует символ Рех в код в виде числа 36. Таблицы кодов даны в инструкциях к микро-ЭВМ и нужны при отладке программы. Далее под программой будет подразумеваться построчная запись символов (иногда кодов) команд (операций), вводимых в микро-ЭВМ в режиме программирования.

Шаги программы и их номера (адреса). Каждая команда в программе занимает строго определенное место, называемое ее адресом. Адреса команд последовательно нумеруются в определенном порядке. Так, в микрокалькуляторах «Электроника БЗ-21» все возможные 60 шагов программы можно объединить в десягь

«страниц» по шесть адресов в каждой или в пять листов (табл. 1.2)

Таблица 1.2

	Систе	ема адр	есов п	рог р ам	мы ми	крокал	ькуля	тора (Элек	трони	ка Ба	3-21»	
€ ЛИСТ	1 »	00	01	02	03	04	05	10	11	12	13	14	15
« ЛИСТ	2»	20	21	22	23	24	25	30	31	32	3 3	34	35
€лист	3»	40	41	42	43	44	45	50	51	52	53	54	55
≰ ЛИСТ	4»	60	61	62	63	64	65	70	71	7 2	73	74	75
Е ЛИСТ	5»	80	81	82	83	84	85	90	91	92	93	94	95

Система адресов микрокалькулятора «Электроника БЗ-34» проще: 98 шагов его программы нумеруются двузначными десятичными числами от 00 до 97. Удобно записывать их по десять в строке. Адреса (номера) шагов программы микро-ЭВМ «Электроника ДЗ-28» задаются пятизначными десятичными числами, например нулевой шаг будет обсзначаться как 00000, а пятый шаг — 00005 и т. л.

Счет шагов ведет специальный счегчик адресации. Адреса операций при вводе программы индицируются индикатором. Программа запоминается в оперативном запоминающем устройстве (ОЗУ) ЭВМ. Часть объема ОЗУ использует-

ся для организации регистров (ячеек памяти).

Прямая и косвенная адресация. Адресацией называется указание адреса (номера) регистра (ячейки) памяти или шага программы. Непосредственное указание адреса — прямая адресация. Так, на с. 6, 7 были даны примеры прямой адресации к регистру 2. Если адрес указывается числом хранящимся в другом регистре памяти, то адресация будет косвенной. Этот регистр называется регистром адресации. Его нельзя будет использовать для хранения исходных данных или промежуточных результатов.

Микрокалькуляторы «Электроника БЗ-21» и «Электроника МК-46» имеют только прямую адресацию, другие указанные в табл. 1.1 микро-ЭВМ имеют

как прямую, так и косвенную адресацию.

Команды сброса на нуль счетчика адресации и пуска — останова вычислений по программе. После ввода программы и перехода к автоматическим вычислениям программу обычно нужно установить на нулевой шаг. В микрокалькуляторах это производится сбросом на нуль счетчика адресации при цажатни клавиши с символом В/О, а в микро-ЭВМ «Электроника ДЗ-28» клавиши с символом С (эта клавиша не вводит код в программу). Остановка вычислений в нужном месте программы в микрокалькуляторах осуществляется вводом символа С/П, а в микро-ЭВМ «Электроника ДЗ-28» — кода 0515. В режиме автоматических вычислений пуск программы с любого шага осуществляется нажатием клавиши С/П (стоп—пуск) в микрокалькуляторах и S в микро-ЭВМ «Электроника ДЗ-28».

Безусловные прямые и косвенные переходы. При построений разветвляюшихся и циклических программ бывают необходимы переходы с одного адреса программы на другой. Такие жесткие переходы называются безусловными. При прямом указании адреса, на который надо перейти, имеем безусловный прямой переход. В микрокалькуляторах он вводится символом БП, за которым указыва-

ется оператор A перехода к нужному адресу.

В микрокальку ляторах «Электроника БЗ-21» оператор А является символом, кол которого на единицу больше адреса перехода. Так, если надо перейти к адресу 00, надо дать символ Р0, код которого 01. Это поясняется следующим фрагментом циклической программы:

blar	00	01	02	03	04	 51	52	53
Символ	F3	1	F4	+	Р3	 P8	БП	P 0
Код	32	06	42	96	31	 81	58	01

При выполнении этой программы происходят следующие операции:

CO — вызов числа из регистра 3 в регистр X (F3);

01 — пересылка числа из регистра X в регистр Y (†); 02 — вызов числа из регистра 4 в регистр X (F4);

03 — суммирование чисел в регистрах X и Y, причем результат запосится в регистр X (+);

04 — запись результата в регистр 3 (Р3);

05...50 — выполнение последующей части программы;

51 — запись результата в регистр 8 (Р8);

52— подготовка к безусловному переходу (БП); 53— безусловный переход по адресу 00 (РО = А). Значительно проще организация безусловных переходов в микрокалькуляторах «Электроника БЗ-34». Для них команда безусловного прямого перехода имеет вид БП А, где А — иомер шага, на который нужно перейти (указывается двузначным десятичным числом). Так, описанный фрагмент программы при реализации его на этом микрокалькуляторе имеет вид

В этом фрагменте вызов числа из регистра N обозначен символами ИПN, запись числа в регистр N обозначена символами ПN. Оператор \uparrow между командами ИП3 и ИП4 не вводится, так как в этом микрокалькуляторе вызов числа из любого регистра ведет к автоматическому переводу ранее имеющегося в регистре X числа в регистр Y.

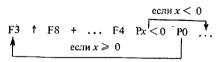
Безусловные переходы могут происходить в любом направлении. Их можно использовать для установки программы (в режиме вычислений) на заведомо определенный шаг программы. Так, нажав в этом режиме клавиши микрокалькулятора «Электроника БЗ-21» БП и Р5 (код 58 и 51), мы установим программу на шаг с адресом 51 — 1 = 50. Для аналогичного перехода в микрокалькуляторе

«Электроника Б3-34» нажимаются клавиши БП, 5 и 0.

Если адрес безусловного перехода указан в специально выделенном регистре адресации, то безусловный переход будет косвенным. В микрокалькуляторах «Электроника БЗ-34» косвенный переход вводится командой вида КБПN, где N — номер регистра адресации.

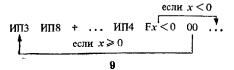
Условные прямые и косвенные переходы. Если переход осуществляется по результатам анализа на определенное условне содержимого операционных регистров, то он называется условным. В микрокалькуляторах такой анализ проводится по содержимому x регистра X. Имеются четыре типа условным переходов, осуществляемых при x=0, x<0: x>0 и $x\neq0$. Команды прямых условных переходов вводятся нажатием префиксной клавиши P («Электроника БЗ-21») или F («Электроника БЗ-34»), клавиши с символом нужного перехода и клавиши с указанием адреса шага, на который осуществляется переход при невыполнении заданного условия. Если это условие выполняется, команда перехода игнорируется и выполняется команда. следующая после команд перехода.

Например, в фрагменте программы для микрокалькулятора «Электроника БЗ-21»

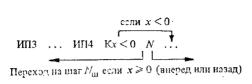


начинающемся с нулевого адреса командой F3, перед командами условного перехода в регистр X вызывается число из регистра 4 (команда F4). Далее содержимое регистра X исследуется на выполнение условия x < 0. Если условие выполняется, то команда условного перехода Px < 0 Р0 игнорируется и выполняются последующие команды. Если условие не выполняется, т. е. $x \ge 0$, то осуществляется переход по адресу, указанному кодом команды Р0 за вычетом 1, т. е. 01 - 1 = 00.

Аналогично выглядит фрагмент программы условного прямого перехода для микрокалькуляторов «Электроника БЗ-34»:



В микрокалькуляторах этого типа возможны и косвенные условные переходы. В этом случае адрес перехода при невыполнении его условия указывается целым числом, хранящимся в регистре адресации N. Косвенные переходы вводятся символом К, после которого указываются условие перехода и номер регистра N, в котором хранится адрес перехода, например:



Подпрограммы. Отдельные многократно повторяющиеся фрагменты программ мегут выделяться в подпрограмму, которая записывается после (иногда до) основной программы. Обращение к подпрограмме в микрокалькуляторах вводится символами ППА, где оператор перехода А указывает на тот шаг подпрограммы, с которого начинается ее выполнение. Для возврата из подпрограммы к выполнению основной программы в конце подпрограммы символом В/О вводится операция возврата. Подпрограммы могут размещаться одна в другой (с глубиной обращения до 5 в микрокалькуляторах).

В микрокальку лятерах «Электроника Б3-21» оператор А вводится символом, код которсто на 1 больи е адреса шага $N_{
m III}$ подпрограммы, с которого начинается ее выполнение. В микрокалькуляторах «Электроника БЗ-34» А — двузначное число, равное номеру шага $N_{\rm HI}$. В них возможно и косвенное обращение к подпрограмме фрагментом КППN, где N — номер регистра адресации, в котором хранится адрес N_{III} перехода. В микро-ЭВМ «Электроника ДЗ-28» программа помечается меткой М с номером в виде 4-значного десятичного числа, например М 0005. Для обращения к подпрограмме в тексте основной программы нужно ввести код в виде номера метки. Возврат из подпрограммы осуществляется помещением в ее конце операции возврата, вводимой кодом 0511.

Допустим, некоторый фрагмент программы имеет n шагов и повторяется т раз. Следовательно, без введения подпрограммы на его занись в программу затрачивается mn шагов. Введенная подпрограмма займет (n+1) шаг (один шаг команда возврата). Кроме того, в тексте основной программы микрокалькуляторов придется выполнить 2m раз обращения к подпрограмме, заданные двумя шагами. Таким образом, выигрыш в числе записанных шагов при введении подпрограммы будет, если mn>(2m+n+1) или [2] n>(2m+1)/(m-1). При числе обращений m=2 n>5, при m=3 n>4, при m=4 n>3 и т. д.

Аналогично для микро-ЭВМ «Электроника ДЗ-28» выигрыш по числу записываемых шагов от введения подпрограммы будет, если mn > (m+n+3)илн n>(m+3)/(m-1). При m=2 n>5, при m=3 n>3, при m=5

Сокращая запись программ, введение подпрограмм в то же время увеличивает общее число шагов проводимых вычислений. Поэтому время вычислений при введении подпрограмм увеличивается, что следует иметь в виду при оценке целесообразности введения подпрограмм.

Модификация (изменение) адреса косвенных переходов. При организации в программе косвенных переходов они могут производиться по неизменяемому адресу, указапному в регистре адресации, и по изменяемому при каждом обрашенни к нему. Так, в микрокалькуляторах «Электроника БЗ-34» адрес нерехода при каждом обращении к регистру адресации 0, 1, 2 или 3 уменьшается на 1, при каждом обращении к регистру 4, 5 или 6 увеличивается на 1 и не меняется при обращении к регистру адресации 7, 8, 9, А (10) В (11), С (12) или Д (13). Модификання адреса существенно расширяет возможности программирования и позволяет строить программы с автоматически изменяемой при вычислениях структурой.

Модификацию адреса можно использовать для автоматического ввода *п* чисел в регистры памяти с помощью фрагмента программы

Здесь в качестве регистра адресации использован регистр 4, в который (в начале программы) вводится число 5. После остановки (команда С/П) вводится число x_1 . При пуске программы происходит обращение к регистру 4, его содержимое изменяется на +1. В результате число x_1 записывается в регистр 6, после чего осуществляется безусловный переход к команде остановки С/П. Второе число x_2 запишется в регистр 7, третье x_3 — в регистр 8 и т. д. Так как последний регистр Д микрокалькулятора «Электроника Б3-34» имеет номер 13, то максимальное значение n=8. Командой вида КИПN можно организовать последовательный вызов чиссл из регистров.

Организания циклов. Для подсчета числа циклов циклических программ используются формулы, дающие ряд целых чисел N: $N_{n+1} = N_n + 1$ или $N_{n+1} = N_n - 1$. В микрокалькуляторах «Электроника БЗ-21» эти вычисления организуются следующими фрагментами программы:

В данном случае под счет N отведен регистр 2. Начальное значение N вписывается в него перед первым пуском программы. Фрагмент программы

... F2 1 —
$$Px = 0$$
 P0 ...

обеспечивает выход из цикла, если число циклов п становится равным числу

 N_0 , введенному в регистр 2.

Подобный фрагмент программы в микрокалькуляторы «Электроника БЗ-34» вводится одной командой организации циклов ... FLN..., где N=0,1,2 или 3 Так, ввод восьми чисел в регистры 6, 7, 8, 9, A, B, C и Д с автоматическим выходом из цикла при вводе последнего числа организуется фрагментом програмымы

Если надо ввести меньшее число чисел n, его записывают вместо цифры 8. Числа 5 и 8 можно ввести в регистры 4 и 0 (адресации и счетчика) вручную. Тогда фрагмент программы будет содержать только 4 шага: С/П КП4 FL0 00 ... Отметим, что подобный ввод при использовании прямой адресации для восьми чисел заиял бы 15 шагов программы:

$$\Pi 6$$
 С/П $\Pi 7$ С/П $\Pi 8$ С/П $\Pi 9$ С/П ΠA С/П ΠB С/П ΠC С/П ΠA

Ввод микропрограмм вычисления функций. Специальные функции аргумента x в микро- Θ BM вычисляются микропрограммно. Микропрограммы вычисления специальных функций вводятся их символами, например e^x , x^y , $\ln x$,

sinx, cosx и т. д. Перед символом в микрокалькуляторах указывается символ префиксной клавиши (см. далее). Например, фрагмент программы ... F4 Pex ... для микрокалькулятора «Электроника Б3-21» означает, что число х вызывается из регистра 4, после чего запускается микропрограмма вычисления функции еx. Микропрограммы обычно реализуют итерационные или другие численные методы вычисления функций. Время вычисления и существенно больше времени выполнения простейших арифметических операций.

Команды окончания вычислений. Команда окончания вычислений в микро-калькуляторах вводится в программу символом С/П. Ей может предшествовать вызов числа на индикацию из регистра памяти N и затем запись результата в регистр M, например ... FN С/П ... или ... FN С/П PM ... Отсутствие команды С/П ведет к зацикливанию программы. В микро-ЭВМ «Электроника

ДЗ-28» подобная команда вводится кодом 0515.

Редактирование программы. При вводе программ возможны ошибки (нажата не та клавиша, введена лишняя команда, пропущена нужная операция и т. п.) Поэтому бывает необходимо редактирование программы. Оно осуществляется просмотром кодов всех операций. В микрокалькуляторах в режиме программирования индицируются номер шага очередной операции и коды трех операций, в микро-ЭВМ «Электроника ДЗ-28» — номер шага, код одной операции (в индикаторе регистра X) и номер шага в шестнадцатиричной форме (в индикаторе регистра Y).

Для просмотра кодов с помощью клавиш ШГ и ШГ в микрокалькуляторах (Ш и ШН в микро-ЭВМ «Электроника ДЗ-28») программа смещается на шаг вперед или назад. Ошибочно введенная команда заменяется правильной или исключается. В микрокалькуляторах исключение производится вводом символа НОП (нет операции), а в микро-ЭВМ «Электроника ДЗ-28» — нажатием клавиши ИШ (исключить шаг). Если вужная команда пропущена, в микрокалькуляторы придется ввести ее и все последующие команды. В микро-ЭВМ с этой целью нажимается клавиша ПШ (поставить шаг), после чего вводится только нужная команда. При исключении или вводе команд в микро-ЭВМ автоматически меняются адреса всех последующих команд.

Пуск программы и ее отладка. Последовательность нажатия клавиш пульта при вводе программы и при выполнении по ней автоматических вычислений описывается далее. Рекомендуется снабжать программы контрольным примером и проверять правильность его решения перед использованием программ. В необходимых случаях отлаживать программу можно, контролируя шаг за шагом вычисления. Для этого служат (в режиме вычислений) клавиша ПП в микрокалькуляторах и Ш в микро-ЭВМ «Электроника ДЗ-28». Одно нажатие этой клави-

ши ведет к выполнению одной операции.

Индикация переполнения и ошибок. При некорректных операциях (например, деление на 0, вычисление логарифма отрицательного числа) микро-ЭВМ останавливают свет и выдают на индикаторе специальный знак ошибки: 00 или другой в микрокалькуляторах «Электроника БЗ-21», ЕГГОГ* в микрокалькуляторах «Электроника БЗ-34», загорание индикатора ОП (ошибка программы) в микро-ЭВМ «Электроника ДЗ-28». Сбой лентопротяжного механизма этой микро-ЭВМ фиксируется загоранием индикатора ОМ (ошибка механизма).

1.3. ОСОБЕННОСТИ ПРОГРАММИРОВАНИЯ МИКРОКАЛЬКУЛЯТОРОВ «ЭЛЕКТРОНИКА БЗ-21» И «ЭЛЕКТРОНИКА МК-46»

Микрокалькулятор «Электроника БЗ-21» (рис. 1.1) и настольная микро-ЭВМ «Электроника МК-46» аналогичны по функциональным возможностям. Помимо очевидных символических обозначений на клавишах, над и под ними отметим специфические:

F и P — символы префиксных клавиш,

↑— оператор переноса числа из регистра X в регистр Y; /—/ — смена знака мантиссы или порядка числа;

^{*} Искаженное написание английского слова Еггог — ошибка.

ВП — ввод порядка числа;

Сх — сброс регистра X на нуль;

 \overrightarrow{XY} — обмен числами между регистрами X и Y;

БП — безусловный переход (ввод);

ПП — подпрограмма (ввод) и пошаговое выполнение программы;

шт и шт — шаг вперед и шаг назад при просмотре программы;

В/О — возврат к нулю счетчика адресации и конец подпрограмм;

С/П — стои—пуск вычислений по программе;

PP — рабочий режим автоматических вычислений по программе;

РП — режим программирования (ввода программы и ее просмотра);

 НОП — нет операции (команда ликвидации опибочно введенной операции);

и — поворот стека по часовой стрелке и против нее.

Операции, обозначенные символами на клавишах, выполняются или вводятся в программу при непосредственном нажатии соответствующей клавиши. Операции, обозначенные символами над или под клавишами, выполняются или вводятся в программу после нажатия соответствующей префиксной клавиши. Цветовая маркировка символов (красный цвет для вводимых после нажатия префиксной клавиши Р операций и черный — для операций, вводимых после нажатия префиксной клави

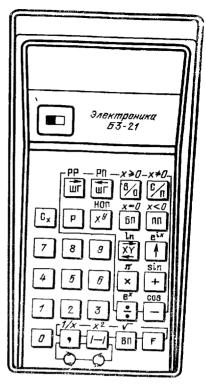


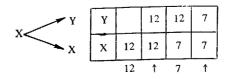
Рис. 1.1 Внешний вид программируемого микрокалькулятора «Электроника БЗ-21»

ши F) облегчает поиск нужной префиксной клавиши. Программа вводится после нажатия клавиш P PП. При этом на индикаторе справа высвечивается знак 00—адрес вулевого шага программы. В процессе ввода адреса меняются в соответствии с приведенными в табл. 1.2, а слева от адресов появляются коды операций (только что введениой и двух предмествующих). Для перехода в рабочий режим автоматических вычислений нажимаются клавиши P, PP и В/О. При этом на индикаторе высвечивается знак 0, а при наборе чисел в операционный регистр X или выводе результатов индицируются восемь разрядов мантиссы (включая запятую) и два разряда порядка числа, а также их знаки (знак —, если мантисса или порядок числа отрицательные). Вычисления по программе сопровождаются мерцанием индикатора. Прервать вычисления можно нажатием клавиши С/П, например, если программа «зациклилась».

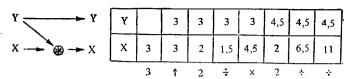
Для рационального составления программ нужно знать, как перемещаются числа в операционных регистрах при выполнении различных операцый. При-

ведем примеры таких перемещений.

1. Операция переноса † (перевод числа из регистра X в регистр Y)



2. Двухместная арифметическая операция с условным символом (ж. \div , +, -)



3. Операция ху

Y Y	Y		10	10	. 10	10
$X \longrightarrow x^y \longrightarrow X$	х	10	10	2	1024	10240
·		10	1	2	xy	X

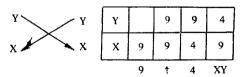
4. Операция е іх

_ теряется		,				
$Y = \sin x$	Y		7	7	0,909297	0,909297
$X \longrightarrow e^{ix} \longrightarrow X = Cos x$	х	7	7	2	-0,416146	4,931508 • 10-1
		7	†	2	Peix	+

5. Вычисление функции * аргумента x = PX (1/x, x^2 , \sqrt{x} , e^x , $\ln x$, $\sin x$, $\cos x$, вызов числа $\pi \to PX$)

Y	Y		5	5	5	5
X → * → X	х	5	5	2	0,693147	3, 465736
		5	1	2	P ln	×

6. Обмен содержимым рагистров X и Y (XY или в дальнейшем упрощенно XY)



Используя приведенные данные, легко объяснить выполнение ряда типовых

операций несколько «необычными» фрагментами программ, например: 1. При a=P2, b=P3 величина $y=a\sin b$ вычисляется фрагментом программы

вместо очевидного F3 Psin † F2 ×.

2. При a = PX вычисление $\sin a$ и $\cos a$ в заносом их в регистры 3 и 4 выполняются следующим фрагментом:

3. При a = P2, b = P3 вычисление (2a - b) выполняется гак:

$$F2 \uparrow F3 - +$$

а вычисление (a + b) a -так:

4. При $a={\sf PX}$, $b={\sf PY}$ вычисление (b-a) и (b+a) с заносом результатов в регистры δ и δ выполняется следующим образом:

$$-$$
 P5 $-$ + P6.

5. Функции tgx при x = PX вычисляются следующими операциями:

$$Pe^{ix} \div$$
.

a ctgx

$$Pe^{Ix} \div F1/x$$
.

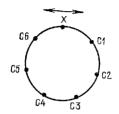
Оператор переноса † можно не вводить, если непосредственно вслед за операцией (включая вызов числа из регистра N) вводится другое число. Так, фрагмент программы F2 2 4 \times означает, что вызванное из регистра 2 число будет умножено на 24. Однако, когда второе число двухместной операции хранится в регистре памяти (например, 3), перед его вызовом вводится оператор, например: F2 † F3 \times . При одноместных операциях после вызова числа из регистра оператор † не нужен.

Как отмечалось, организация переходов (безусловных, условных и к подпрограммам) в микрокалькуляторе «Электроника Б3-21» усложнена тем, что нужно знать код операции, который на 1 больше номера шага, к которому осуществляется переход. Для быстрого поиска символов, задающих переход на нужный шаг $N_{\rm ul}$, можно использовать табл. 1.3.

. Таблица 1.3 Символы, обеспечивающие переходы на требуемый шаг программы

N _{III}	00	01	02	03	04	05	10	11	12	13	11	15
Символ	P0	F ₀	P↑	0	Fe ix	1	Pl	F1	Plп	ı	FXY	XY
N _m	20	21	22	23	24	25	30	31	32	33	34	35
Символ	P2	F2	Ря	2	$F \times$	X	P3	F 3	Pex	3	F÷	÷
N _{ui}	‡0	41	42	43	44	45	50	51	52	53	51	55
Символ	P4	F4	Р,	4	F1/x	,	P5	F5	P/-/	5	Fx^2	/ _/
$N_{\mathbf{m}}$	60	61	62	63	64	65	70	71	72	73	74	75
Символ	P6	F6	РВΠ	6	F _V -	BII	P7	F7	PCx	7	FCx	Сæ
<i>N</i> _{ttt}	80	81	82	83	84	85	90	91	92	93	91	9 5
Символ	P8	F8	Pcos	8	F—	_	P 9	F9	Psin	9	F-	+

Подчеркнутые символы с номерами шагов 55, 65, 70, 80, 81, 91 и 92 нельзя использовать в качестве операторов перехода к подпрограмме. так как (специфический недостаток данного микрокалькулятора) эти операторы не будут восприниматься. Использование табл. 1.3 поясним примером. Пусть надо сделать какой-то переход на шаг с $N_{\rm m}=41$. Из таблицы находим символ оператора перехода F4. Таблицу 1.3 можно использовать в качестве таблицы кодов приведенных в ней символов. Код всегда на 1 больше $N_{\rm HI}$. Так



Puc. 1.2 Структура стека микрокалькулятора «Электронька Б3-21»

для оператора $\uparrow N_{\rm HI} = 05$, следовательно, его код будет 06. Структура стека (рис. 1.2) обеспечивает круговой обмен чисел в его ячейках при нажатии клавиш

Р С = Р, и Р С = Р/-/ соответственно по часовой

стрелке и против нее. В дальнейшем будут использоваться более удобные для типографского набора символы поворота стека Р, и Р/—/. Пусть, например, в регистре Х храинтся число $x_0 = PX$ (знак = означает присвоение числа x_0 содержимому регистра X), а в других регистрах стека хранятся числа $x_1=\mathrm{Cl},\ x_2=\mathrm{C2},\ ...,\ x_6=\mathrm{C6}.$ При нажатии клавиш P и , происходят следующие обозначенные стрелками переходы: $x_0 \to C1$, $x_1 \to C2$, ..., $x_5 \to C6$, $x_6 \rightarrow PX$.

При вычислениях функций $\sin x$, $\cos x$, e^{ix} и x^y аргумента x регистры стека используются как рабочие и в них могут попадать произвольные числа. В [2] приведена таблица значений х и померов регистров стека, которые нельзя применять для данных значений х. Однако значения х редко бывают наперед известны. Поэтому не рекомендуется применять стек при выполнении этих операций в промежутке между операциями ввода и вывода чисел из стека.

При линейных программах остановки вычисления вводятся оператором C/Π . При циклических программах остановка по заданному числу $n=\dot{\mathsf{P}}N$ цик-

лов выполняется фрагментом

$$FN = 1 - PN Px = 0 A \dots C/\Pi$$

где A — оператор перехода к нужному адресу при числе циклов меньше n.

Программы, реализующие итерационные циклы, останавливаются при выполнении условия $|x_{n+1}-x_n|<arepsilon$, где arepsilon — малое число, задающее точность результата. Иногда остановку счета осуществляют по условию $x_{n+1}=x_n$ с точностью до машинного пуля. При $x_n=\mathsf{P} N$ для этого используют следующие фрагменты программ [2]:

...
$$\uparrow$$
 FN XY + PN - Px = 0 A FN C/ Π :
... \uparrow FN + PN \div Psin Px = 0 A FN C/ Π .

В некоторых случаях остановка осуществляется, если приращение $\Delta x = PN$ достигает машинного нуля, что реализуется фрагментом программы

...
$$FN$$
 Psin $Px = 0$ A ... C/Π ,

основанным на том, vто $\sin \Delta x \approx \Delta x \neq 0$ при малом Δx , большем машинного

нуля, и $\sin \Delta x = 0$ при любом малом Δx , меньшем машинного нуля.

Следует стремиться к удобству и естественности расположения исходных данных и результатов вычислений в регистрах памяти. Так, решая систему из двух уравнений

$$a_1x + b_1y = c_1, a_2x + b_2y = c_2,$$
 (1.1)

коэффициенты целесообразно вводить по строкам так:

$$a_1 = P7$$
, $b_1 = P8$, $c_1 = P6$, $a_2 = P4$, $b_2 = P5$, $c_2 = P3$.

что соответствует естественному расположению их и клавиш пульта (см. рис. 1.1).

Сложные константы, например заряд электрона q=-1 602 · 10 $^{-19}$ Кл по возможности следует вводить в один из регистров N. Тогда константа вызывается одной операцией вида FN. Если константу $m{q}$ вписать в программу она займет 10 шагов:

Напротив, малые целые числя (1, 2, 3, ..., 9) удобно вводить прямо в программу, что занимает 1 шаг. Для сокращения программы операцию 0.5a при $a \Rightarrow PN$ следует записывать как FN 2 😑 (т. е. деление а на 2). Вычисление амплитудного значения $U_m=\sqrt{2}U_{3\Phi\Phi} \eqsim 1.414\ U_{9\Phi\Phi}$ лучше записывать как FN 2 FV imes, а не как FN 1 , 4 1 4 \times ($U_{3\Phi\Phi}=$ PN). Для ускорения вычислений x^3 и x^4 лучше вычислять как $x \cdot x^2$ и $x^2 \cdot x^3$, не используя операцию x^y

Для табулирования функций аргумента з последнему задают программно

дискретные значения. Например,

$$u(t_n) = U_m \left(1 - e^{-t_n/\tau} \right)$$
 (1.2)

вычисляют, задавая

$$t_n = t_{n-1} + \Delta t. \tag{1.3}$$

Программа при этом имеет вид ($t_n = P2$, $\Delta t = P3$, $\tau = P4$, $U_m = P5$)

0 P2
$$\uparrow$$
 F4 \div /—/ Pe^x /—/ 1 $+$ \uparrow F5

$$\times$$
 C/ Π F2 \uparrow F3 + Π F0.

При каждом выполнении программы t получает приращение на величину $\Delta t.$ после чего новое значение t_n записывается в регистр 2 с помощью команды безусловного перехода БП F0 ко второму шагу программы P2 (запись t_n и в регистр 2). Например, при $U_m=1$ В, $\tau=1$ с и $\Delta t=0.5$ с, нажимая клавишу С/П, получаем: u (0) = 0, u (0.5) = 0.3934693; u (1) = 0.6321205 и u (1.5) = = 0,7768698 и т. д. Отметим, что в приведенной программе при первом пуске (нажатием клавиш В/О и С/П) автоматически очищается регистр 2 (в него вводится 0). Значения t_n всегда можно вывести из регистра 2.

Аргумент тригонометрических функций при расчетах на микрокалькуляторах «Электроника БЗ-21» должен выражаться в радианах. Если он выражен в градусах, то вводится фрагмент программы \uparrow Р π \times 1 8 0 \div .

Вычисления по вреденной и отлаженной программе выполняются в следующем порядке: нажимаются клавиши Р. РР и В/О, вводятся исходные данные и нажимается клавиша С/П. Если вычисления должны вестись не с нулевого адреса, перед нажатием клавиш С/П нажимаются клавиша БП и клавиши ввода символа установки нужного шага $N_{\rm III}$.

1.4. ОСОБЕННОСТИ ПРОГРАММИРОВАНИЯ МИКРОКАЛЬКУЛЯТОРОВ «ЭЛЕКТРОНИКА Б3-34» и «ЭЛЕКТРОНИКА МК-56»

Микрокалькуляторы «Электроника БЗ-З4» (рис. 1 3) более совершенны, чем «Электроника Б3-21». В них больше число шагов программы (98 против 60), увеличено число дополнительных регистров (до 14), введены многофункциональ. ный стековый блок операционных регистров, регистр восстановления результата предшествующей операции, микропрограммное выполнение дополнительных Φ ункций аргумента x (10^x , $\lg x$, $\lg x$, lpha arcsinx, lpharccosx, lpharctgx), предусмотрены не только прямые, но и косвенные переходы и обращения, выполняются команды организации счетчиков циклов, упрощена система адресации команд и переходев различных типов. Настольная микро-ЭВМ «Электроника МК-56» является функциональным аналогом данного микрокалькулятора

Помимо очевидных символических обозначений на клавишах, над и под ними для микрокалькулятора «Электроника Б3-34» отметим специальные:

 F — символ префиксной клавиши ввода символов, нанесенных над клавишами. К — символ префиксной клавиши ввода косвенных переходов и обращений к регистрам памяти,

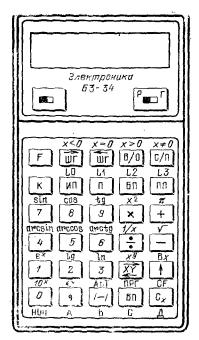


Рис. 13. Внешний вид программируемого микрокалькулятора «Электроника БЗ-31»

1111 — вызов чисел из регистров памяти, П — ввод чисел в регистры памяти,

АВТ — перевод в рабочий режим (автоматических вычислений по введенной программе), ПРГ — программирсвание (ввод программы), СГ — сброс действия префиксиой клавиши F, Вх — восстановление в регистре X результата предшествующей операции,

А, В, С, A — обозначения четырех последних регистров памяти (из четырнадцати), L0, L1, L2, L3 — операторы организации счета циклов в регистрах памяти 0, 1, 2 и 3.

Расшифровка других символов ($\widehat{\text{ШГ}}$, $\widehat{\text{ШГ}}$, $\widehat{\text{ШГ}}$, $\widehat{\text{В/O}}$, C/Π , $\Pi\Pi$, B11, $B\Pi$, C_{∞} и /—/) аналогична приведенной для микрокалькулятора «Элек-

троника Б3-21». Расшифровка символа поясняется далее (рис. 1.4).

В режим программирования микрокалькулятор «Электроника БЗ-З4» вводится нажатием клавиш F и ПРГ. При вводе программ на индикаторе слева направо индицируются три кода (см. приложение 2, табл. П2.1) введенных последними операций и номер шага очередной вводимой операции. В режим автоматических вычислений микрокалькулятор переходит при нажатни клавиш F и АВТ. При этом индицируются мантисса (восемь разрядов) и порядок (два разряда) вводимого числа или результата вычислений, а также знаки «минус» мантиссы и порядка (если ови отрицательны). Запятая мантиссы отдельного разряда индикатора не занимает.

Операционный стек микрокалькулятора «Электроника БЗ-34» содержит 4 регистра (X, Y, Z и T), а также регистр восстановления результата предшествующей опсрации (X1). Перемещение чисел в стеке при различных опсрациях прказано на рис. 1.4. Операции выполняются по так называемой обратной бесскобочной форме записи, предложенной польским математиком Лукасевичем.

Приведем формы записи ряда выражений:

обычная запись

обратная бесскобочная запись

$$\begin{array}{lll} ab+c \\ a+bc \\ a(b+c) \\ (a+b)(c-d) \\ ab/c \\ ad-bc \\ \overline{uz-vy} \\ & \ln(x+\sqrt{yz-\sin u}) \end{array} \qquad \begin{array}{lll} a\uparrow b\times c+\\ a\uparrow b\uparrow c\times +\\ a\uparrow b\uparrow c+\times\\ a\uparrow b\uparrow c+\times\\ a\uparrow b\uparrow c+\times\\ a\uparrow b\wedge c+\times\\ a\uparrow b\wedge c\times -\\ u\uparrow z\times v\uparrow y\times -\div\\ y\uparrow z\times u\sin -\sqrt{x+\ln u} \end{array}$$

Из этих примеров видно, что обратиая бесскобочная запись позволяет производить довольно сложные вычисления непосредственно в операционном стеке, не прибегая к использованию вспомогательных регистров памяти. Для нее возможен последовательный ввод нескольких (до четырех) чисел с последующим указанием операций над ними. В ручном режиме для разделения ввода используется оператор †. При его использовании числа в стеке перемещаются на одну ступеньку вверх. В режиме автоматических вычислений по программе такой переход осуществляется автоматически всякий раз, когда в регистр РХ вводится число непосредственно или из N-го регистра памяти. При выполнении ариф-

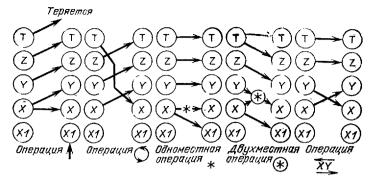


Рис. 1.4. Перемещение чисел в стеке операционных регистров микрокалькулятора «Электроника БЗ-34» при различных операциях

метических операций результат получается в регистре X, а все числа в регистрах опускаются на ступеньку вниз. Например, вычисление a (b+c) по програм не при a=PA, b=PB и c=PC реализуется таким фрагментом:

ИПА ИПВ ИПС
$$+ \times C/\Pi$$

(вручную $a \uparrow b \uparrow c + \times$). Число в регистре Т сохраняется. Эти правила можно распространить на более сложные вычисления. Например определитель 3-го порядка можно раскрыть, используя правило Крамера

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = c_1 (a_2 b_3 - a_3 b_2) + c_2 (a_3 b_1 - a_1 b_3) + c_3 (a_1 b_2 - a_2 b_1),$$

следующим образом (вручную):

Разместив коэффициенты определителя в естественной форме в регистрах микрокалькулятора

$$a_1 = P7$$
, $b_1 = P8$, $c_1 = P9$, $a_2 = P4$, $b_2 = P5$, $c_2 = P6$, $a_3 = P1$, $b_3 = P2$, $c_3 = P3$,

Δ можно вычислить по следующей программе:

ИП4 ИП2
$$\times$$
 ИП1 ИП5 \times — ИП9 \times ИП1 ИП8 \times ИП7 ИП2 \times — ИП6 \times + ИП7 ИП5 \times ИП4 ИП8 \times — ИП3 \times + С/П

Возможности операционного блока проиллюстрируем также иа примера вычисления достаточно сложного выражения

$$k = \ln \frac{a(b+c)}{\sqrt{d+ef}} = \ln \frac{2(0,3+1,7)}{\sqrt{1+2\cdot 1,5}} = \ln 2 = 0,69314717.$$

Введя $a={
m P0},\,b={
m P1},\,c={
m P2},\,d={
m P3},\,e={
m P4},\,{
m u}\,f={
m P5},\,{
m coставим}$ программу вычисления k:

ИПО ИП1 ИП2 +
$$\times$$
 ИП3 ИП4 ИП5 \times + F/ \div Fin C/П

Операторы построения счета циклов упрощают построение ряда циклических программ. Так вычисление суммы n=PX простых чисел C=(1+2+1)+1 выполняется по программе

если
$$x_0 = P0 = 0$$
ПО 0 ИПО + FLO 02 СП
если $x_0 = P0 < 0$

Число n при первом пуске заносится в регистр счетчика 0. При каждом прохождении оператора FLO число x_0 (вначале $x_0=n$) уменьшается на 1 и организуется суммирование n чисел. Аналогично вычисляется произведение $\Pi=(1\times 2\cdot 3\cdot ...\cdot n)$:

$$\Pi$$
0 1 И Π 0 × FL0 02 С/ Π

и факториал n! (с учетом особого случая 0! = 1):

Косвенная адресация к регистрам памяти с модификацией их адреса удобна для вычисления многочленов по схеме Горнера. Так, многочлен степени $m\leqslant 11$

$$y=a_0+a_1x+a_2x^2+...+a_mx^m=a_0+x$$
 $(a_1+x\ (a_2+...+xa_m)...)$ при $a_0={\rm PC},\ a_1\ ...\ a_{11}={\rm P1}\ ...\ {\rm P9},\ {\rm PA},\ {\rm PB}$ вычисляется по программе ПД ... m ... ПО ИП m \uparrow XY НПД \times КНПО \div ИПО ${\rm Fx}=0$ 06 XY ИПС $+$ С/П ${\rm B\Pi}$ 00

Фрагмент программы косвенной адресация вида ПN КППN ИПN, где $V \rightarrow$ номер регистра 7, 8, 9, A, B, C или Д, можно использовать для выделения целой части дробного числа x = PX ($10^s > x > 1$). Для выделення дробной части числа x > 0 пригоден другой фрагмент: ... $\uparrow 1 + \Pi N$ КИПN XY ИПN - CП. Если результат вычислений y = PN получается с точностью до малого $\varepsilon = 1 \cdot 10^{-n} = P$ Д, то его округление до n знаков после запятой выполняется с помощью фрагмента программы

ИПN ИПД \div ПС КИПС ИПС ИПД imes С/П

1.5. ОСОБЕННОСТИ ПРОГРАММИРОВАНИЯ МИКРО-ЭВМ «ЭЛЕКТРОНИКА ДЗ-28»

Настольные микро-ЭВМ намного превосходят микрокалькуляторы по таким важнейшим параметрам, как быстродействие, число регистров (ячеек) памяти, максимальное число шагов программы, число команд. В то же время работа на них принципиально ничем не отличается от работы на микрокалькуляторах. Микро-ЭВМ «Электроника ДЗ-28» (рис. 1.5) является специализированным вычислительным и управляющим устройством, которое можно использовать и для расчетов. и для управления различными объектами (системы обработки информации, станки с программным управлением и т. д.). При работе с данной микро-ЭВМ следует руководствоваться техническим описанием и справочником программиста, входящими в комплект ее технической документации. Здесь же приведем основные сведения, необходимые для расчетов на этой микро-ЭВМ.

Клавиши прямого кодирования, расположенные сверху на пульте управления, служат для задания кодов всех команд и номеров десятичных регистров памяти. Команды могут быть двух типов: одношаговые и двухшаговые. Они кодируются соответственно двумя В1А1 или четырьмя В1А1 В2А2 шестнадцатиричными числами (от 00 до 15). Числа В1 и В2 набираются как сумма чисел на левых клавишах (нули игнорируются) всрхнего ряда. Числа А1 и А2 набираются нажатием соответствующих правых клавиш верхнего ряда. Например.

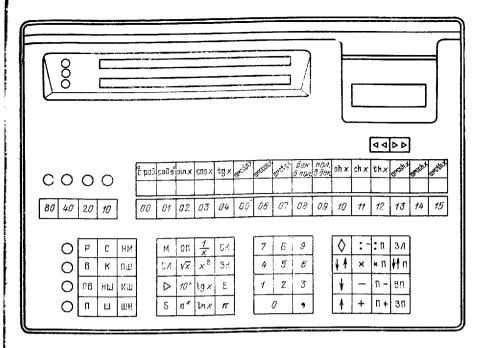


Рис. 1.5. Пульт управления настольной микро-ЭВМ «Электроника ДЗ 28»

команда с кодом 04 12 05 15 набирается нажатием клавиш 40, 12, 40, 10, 15. Следует учитывать, что ряд команд вводится только набором их кодов (при

желании в кодах можно ввести все команды).

Операционными в микро-ЭВМ «Электроника ДЗ-28» являются регистры X и Y. Оба они спабжены индикаторами. Имеются также дополнительный регистр Z, регистр остатка и 166 регистров для десятичных чисел с прямой и косренной адресацией (следует отметить, что большой объем ОЗУ этой ЭВМ в 16 или 32 кбайта позволяет организовать в нем большое число добавочных по отношению к упомянутым регистров памяти). Адрес любого регистра указывается кодом В2А2 (от 0000 до 1515). Часть объема ОЗУ используется для запоминания команд программ.

Функциональное назначение других клавиш пульта ясно из рис. 1.5 и табл. 1.4. Отметим, что помимо микропрограмм, указанных для микрокалькуляторов, микро-ЭВМ «Электроника ДЗ-28» реализует микропрограммы вычисления гиперболических (shx. chx, и thx) и обратных гиперболических (агс shx, агс chx и агс thx) функций, а также микропрограммы перевода чисел у и х из

декартовой системы координат в полярную:

$$\rho = \sqrt{x^2 + y^2} \rightarrow PY; \quad \varphi = arctg(y/x) \rightarrow PX$$

в наоборот ($\rho = PY$, $\phi = PX$):

$$y = \rho \sin \varphi \rightarrow PY; x = \rho \cos \varphi \rightarrow PX.$$

Функции, указанные над верхними правыми клавишами пульта, вычисляются при наборе кода BIAI, где BI = 08 (нажимается клавиша 80 левого ряда) и AI — соответствующее число на клавише правого ряда, пад которой дан символ нужной функции.

Коды большинства операций вводятся автоматически при нажатии соответствующей клавиши пульта (см. табл. 1.4). Часть операций вводится в кодак (табл. 1.5 и 1.6). С учетом не упомянутых специальных операций (управления

Таблица 1.4 Функциональное назначение клавиш пульта микро-ЭВМ «Электроника ДЗ-28» и вводимые ими коды

Клавиша	Код BIAI	Наименование команды (операции)
Р В ПВ П	-	Работа— переход в рабочий режим Ввод программы Печать при вводе программы Печать программы
С НМ НШ ИШ КП ШН Ш	-	Сброс — установка программы на нулевой адрес Найти метку — установка программы на адрес метки Номер шага — установка программы на заданный номер шага, указаппый пятизначпым числом Поставить шаг — с кодом В1А1, указанным вслед Исключить шаг (на котором остановлена программа) Контроль программы — вызов $N_{\rm u}$ в индикатор регистра X Шаг назад — смещение программы на шаг назад Шаг — смещение программы па шаг вперед
№ С.Л S ОП 10 ^x e ^x 1/x x ² 1gx 1пx СК ЗН Е	0407 0408 0513 0514 0510 0612 0613 0614 0615 0713 0610 0611 0715 0711	Поиск метки с кодом $B2A2$ Метка — отметка места программы меткой $B2A2$ Считывание с ленты Старт — пуск программы — гашение индикатора ОП Вычисление функции $Vx \to X$ Вычисление функции $e^x \to X$ Гашение индикатора регистра $e^x \to X$ Изменение знака мантиссы или порядка числа Нормализация мантиссы Вызов числа $e^x \to X$
0 1 9 ,	0700 0701 0709 0712	0→X 1→X 9→X Ввод запятой, →X Печать (при работе с пишущей машинкой)
1	0606 0605 0604	Обмен содержимым регистров X и Y Ввод числа из регистра Y в регистр X Ввод числа из регистра X в регистр Y

Клавиша	Код В1А1	Наименование команды (операции)
÷	0603	Деление $(Y):(X)\to (Y)$
×	0602	Умпожение $(Y) \times (X) \rightarrow (Y)$
	0601	Вычитание $(Y) - (X) \rightarrow (Y)$
+	0600	Суммирование $(Y) + (X) \rightarrow (Y)$
÷Π	0403	Деление в ячейке намяти B2A2 на число (X)
$\times\Pi$	0402	Умножение в ячейке памяти В2А2 на число (Х)
Π	0401	Вычитание из ячейки намяти В2А2 числа (Х)
$\Pi+$	0400	Суммирование в ячейке памяти с числом (Х)
∱↓Π	0406	Обмен числами в ячейке памяти В2А2 и в регистре Х
ВП	0405	Вызов числа из ячейки памяти В2А2 - Х
зп	0404	Запись числа (Х) в ячейку памяти В2А2

Таблица 1.5
 Организация основных безусловных и условных переходов микро-ЭВМ «Электроника ДЗ-28»

К	од	(Переход на щаг
BIAI	В2А2	Условие перехода (ветвления)	программы*
1402	B2A2	Безусловный переход вверх	.—16B2+ A2—1
1403	B2A2	Безусловный переход вниз	+16B2+A2+1
0407	d	Всзусловный переход к метке с номером d	Шаг посл е d
05 09		(Y) = (X), проверка условия Y—X = 0	. ÷3
0412	0611	(X) = 0 по первому разряду мантиссы	.+4
0412	0411	(Y) = 0 по первому разряду мантиссы	.+1
0507		$(Y) \geqslant (X)$, проверка условия $(Y-X) \geqslant 0$.+3
0508		(Y-X) > 0 (Y) < (X), проверка условия (Y-X) < 0	.+3
0412	0710	(X) отрицательно (по ненулевому раз- ряду)	.+4
0412	0510	(Y) отрицательно (по ненулевому зна- ковому разряду)	.+1
0412	0711	(Х) ≠0 по первому разряду мантиссы	. +4
0412	0511	(Y) ≠0 по первому разряду мантиссы	(-4
0412	0 610	(X) положительно (по знаковому раз- ряду)	.+4
0412	0410	(Y) положительно (по знаковому раз- ряду)	. +4
1204		Код (Y) равен коду (X) по всем разрядам	.+3

[•] Точкой обозначен номер шага программы, предшествующего команде перехода.

Наиболее употребительные команды общего назначения микро-ЭВМ «Электроника ДЗ-28» н их коды

Ko	од	
BIAI	B2A2	Паименование команды (операции)
0511		Возврат из подпрограммы
0512		Конец программы
051 5 .		Остановка программы для ввода и вывода данных
0608		Сброс дробной части числа в регистре Х
0714		Вызов в регистр Х остатка числа х
0412	0514	Вызов в регистр Х константы 180/л
0412	0515	Вызов в регистр Х константы л/180
0412	0615	Пауза в вычислениях (≈0,9 с) с включением индикации
0412	1209	Перемотка магнитной ленты вперед (▷▷)
1200		Перемотка магнитной ленты назад (< </td
1209		Нормализация числа в регистре X
0414	B2A2	Запись числа из регистра У в ЯП В2А2
0415	B2A2	Запись числа из ЯП В2А2 в регистр Ү
0406	B2A2	Обмен содержимым между регистром Х и ЯП В2А2
0506		Обмен содержимым между регистром X и $\mathfrak{R}\Pi$, номер которой указан в регистре Y
1214		Запись числа из регистра У в регистр Z
1215		Вызов числа из регистра Z в регистр Y
0504		Косвенная адресация — запись числа из регистра X в ЯП с номером N , указанным в регистре Y
0505		Косвенная адресация — вызов числа ЯП с номером N , указанным в регистре Y , в регистр X

периферийным оборудованием, действия с шестнадцатиричными числами и др.) число команд микро-ЭВМ «Электроника ДЗ-28» составляет 463. Отсутствие упоминация о многих командах связано также с организацией специальных типов косвенной адресации.

Любую часть программы или подпрограмму можно обозначить мсткой, вводимой клавишей с символом М (код 0408) и набором номера B2A2 метки. Команда поиска метки вводится клавишей с символом ▷ (код 0407) с последующим набором номера B2A2 искомой метки. Так, если введена метка 0408 0001, то при паличии в программе кода 0407 0001 произойдет безусловный переход к выполнению шага программы, стоящего вслед за командами метки 0408 0001.

Для обращения к подпрограмме в нужном месте программы следует поставить только код номера метки подпрограммы. Так, если в программе встретится код 0002, то произойдет поиск подпрограммы с меткой 0408 0002 и выполнение этой подпрограммы. Возврат из подпрограммы выполняется операцией, вводимой кодом 0511. Если указанной подпрограммы нет, загорается индикатор ОП (ошибка программы). В конце всей программы или блока программ следует поставить оператор «конец программы», вводимый кодом 0512 (можно рекомендовать сделать это дважды, чтобы этот код не воспринимался как часть двухшаговой команды).

Заносить исходные данные в регистры памяти и вызывать числа из них можно операциями ЗП (запись в память) и ВП (вызов из памяти) с указанием колового номеря регистра памяти. Например, если число 1234 надо ввести в регистр 0005, в программу после набора этого числа вводится операция ЗП 0005. Фраг-

Таблица 1.7 Фрагмент программы полуавтоматического ввода исходных данных в микро-ЭВМ «Электроника ДЗ-28»

Алрес команды	Команда	Код команды	Пояснен ие
00000	M	0408	Присвоение программе метки
00001	0001		Номер метки
00002	0	0700	Вызов нуля Обнуление ячейки памяти с номером
00003	ЗП	0404	
00004	0000	000 0	0000
00005	ЗП	0404	Обнуление ячейки памяти с номером
00006	0001	0001	0001
00007	0515	051 5	Команда остановки (ввода данных) Запись в ячейку памяти с номером 0002
00008	3П	0404	
00009 00010 00011	0002 CK 0515	0002 0715	Гашение индикатора регистра X
00012 0 0013	3FI 0003	0515 0404 0003	Команда остановки (ввода данных) Запись данных в ячейку памяти с номером 0003
00014	CK	0715	Гашение индикатора регистра X
00015	0515	0515	Команда остановки (ввода данных)
00016	3lT	0404	Запись данных в ячейку памяти с номером 0004
0 0017	0004	0004	

мент программы полуавтоматического ввода исходных данных с использованием прямой адресации ячеек (регистров) памяти ЯП дан в табл. 1.7 Автоматическое распределение исходных данных по ЯП реализуется косвенной адресацией (табл. 1.8). При этом число шагов программы не зависит от числа вводимых чисел N. Числа последовательно вводятся в ЯП с номерами от 0001 до 1500 (ЯН 0000 используется как счетчик). Перед вводом каждого очередного числа гасится индикация регистра X, а на индикатор регистра У выводится порядковый помер этого числа.

Составление основной программы для микро-ЭВМ «Электроника ДЗ-28» мало отличается от такового для микрокалькуляторов. Так, выражение (12) программируется следующим образом:

BΠ 0002 3H ↑ BΠ 0003 ÷ ↓
$$e^{x}$$
 3H ↑ BΠ 0004 × 0515

Программы для микро-ЭВМ «Электроника ДЗ-28» получаются несколько длиннее, чем у микрокалькуляторов, так как часть операций осуществляется двух-шаговыми командами (например, запись чисел в ЯП и вызов их из ЯП). Однако этот недостаток мало существен так как число шагов программы микро-ЭВМ «Электроника ДЗ-28» может доходить в пределе до 32512 (для модификации с объемом ОЗУ 32 кбайт).

С содержимым десятичных ЯП в регистра X можно проводить арифметические операции, вводимые клавишами $\div\Pi$, $X\Pi$, $\Pi+$ и $\Pi-$ с последующим указанием номера ЯП В эту ЯП заносится результат операции. Командой с кодом 0714 на индикацию регистра X можно вызвать остаток числа, имеющегося в регистре Y (еще 12 знаков)

Для редактирования и просмотра кодов программ служат клавиши III (шат вперед), ШН (шаг назад), С (сброс счетчика адреса команд на пулевой адрес), НШ (номер шага, который указывается затем в виде пягизначного десятичного

Фрагмент программы автоматического размещения исходных данных в ЯП микро-ЭВМ «Электроника Д3-28»

Апрес. Боманды	Команда	Код	Пояспен ие		
000 00 00001	3П 1501	0404 1501	Запись числа вводимых параметров N в ЯП 1501		
00002 00003 00004	0 3П	0700 0404	Обнуление ЯП 0000, отведенной под счетчик		
00004	0000	0000 0701	Вызов 1 в регистр Х		
00006 00007	Π+ 0000	0400 0000	Прибавление 1 к содержимому ЯП 0000 $(N_n = N_{n-1} + 1)$		
00003 00009	ВП 0 000	0405 0000	Вызов содержимого ЯП 0000 в регистр $X(N_n \to X)$		
C1000	↑	0604	Перенос содержимого ЯП 0000 в регист $Y(N_n \to Y)$		
00011 00012	CK 0515	0715 0515	Гашение индикации регистра X Команда «стоп» для индикации номера вводимого параметра N_n в регистре Y и его ввода в регистр X		
00013	0501	0504	Косвенная адресация — запись числа из регистра X в ЯП с номером, указанным числом в регистре Y		
00014	ВП	0405	Вызов Л из ЯП 1501		
00015	1501	1501	в регистр $X(N \to X)$		
00016	0507	0507	$CpaBHcHHe\ N_n$ с N		
00017	1402	1402	Безусловный переход при $N_n < N$ вверх на 13 шагов, т е. к команде с адресом		
00018	0013	0013	00005		
00019		,	Выполнение последующей программы при $N_n = N$		
	1		1		

числа), ПШ (поставить шаг), ИШ (исключить шаг) и \triangleright (найти метку). С любого шага программа запускается нажатием клавиши S.

В рассматриваемой микро-ЭВМ предусмотрены запись программ и их считывание с помощью встроенного кассетного цифрового магнитофона. Для их выполнения нажимается клавиша Р (работа), что фиксируется загоранием светодиода около этой клавиши (вручную программы вводятся нажатием клавиши В). Для записн программы на магнитную ленту нажимаются клавиши С (или установки нужного шага программы) и ЗЛ (запись на ленту). Для считывания программ нажимаются клавиши С и СЛ (считывание с ленты). При ошибке считывания загораются индикаторы ОП (ошибка программы) или ОМ (ошибка механизма).

Пля идентификации программ вычисляется сумма N_{Π} всех кодов, кроме последней операции с кодом 0512. Эта сумма индицируется при нажатии клавиши КП (контроль программ). По номеру метки и N_{Π} нужной программы ее можно легко найти среди других программ, записанных на ленте.

1.6. ПЕРЕВОД ПРОГРАММ С ОДНОГО ЯЗЫКА ПРОГРАММИРОВАНИЯ НА ДРУГОЙ

Большая часть программ в данной книге дана на языке микрокалькулятора «Электроника БЗ-21» и легко (часто дословно) переводится на язык других микрокалькуляторов. Обратный перевод намного сложнее. При переводе программ следует учитывать некоторое различие в символике клавиш даже однотилных по возможностям микрокалькуляторов, например «Электроника БЗ-34», «Электроника МК-56» и «Электроника МК-54» (табл. 1.9). В последнем символы ряда клавиш даны на английском языке. В разнотипных по возможностям микрокалькуляторах различие символов может быть менее формальным и может потребоваться введение или устранение той или иной операции.

Таблица 1.9 Соответствие символов клавиш микрокалькуляторов «Электроника»

Б3-34	MK-56	MK-54	Б3-34	MK-56	MK-54
/-/	/—/	CHS	ПП	пп	GSB
ВП	ВП	EEX	B/O	B/O	RTN
Cx	Cx	CLX	∥ C/Π	С/П	R/S
ИП	$\Pi \rightarrow x$	RCL	一一一	шř	SST
П	<i>x</i> →П	STO	नाचें	र्गाचे	BST
\overrightarrow{XY}	↔	X↔Y	arcsin	sin-1	sin-1
· 1	B↑	ENT	arccos	cos-1	cos-1
БП	БП	GTO	arctg	cos-1 tg-1	tg-1

Поясним сказанное примером. Пусть нужно занести результат вычисления be^a в регистры X и 4 при a=P2 и b=P3. Фрагменты программ для разных микро-ЭВМ будут иметь вид

- 1. «B3-21» F3 \uparrow F2 Pe^x \times P4 C/ Π .
- 2. «Б3-34» ИП3 ИП2 $Fe^x \times \Pi 4$ С/П.
- 3. «MK-56» $\Pi \rightarrow x3$ $\Pi \rightarrow x2$ Fe^x \times $x \rightarrow \Pi4$ C/ Π .
- 4. «MK-54» RCL3 RCL2 Fex X STO4 R/S.
- 5. «Д3-28» ВП 0003 ↑ ВП 0002 e^x × ↓ 3П 0004 0515.

Во 2...4-м фрагментах отсутствует оператор ↑. В 5-м фрагменте перед записью результата в ячейку памяти (регистр) с номером 0004 стоит оператор ↓, так как результат предшествующей операции заносится в регистр Y (а нам надо получить его в регистре X).

Операции ввода чисел в стек и вывода их в программах для микрокалькуаятора «Электроника БЗ-21», например вида

при реализации программы на микрокалькуляторе «Электроника БЗ-34» чожно заменить следующими:

Операнд, введенный в регистр Y микрокалькулятора «Электроника БЗ-21», сохраняется в нем при всех операцнях, кроме вычисления е^{ix}, так что его можно вспользовать в качестве константы. Микрокалькуляторы «Электроника БЗ-34» этим свойством не обладают, а микро-ЭВМ «Электроника ДЗ-28» оно присуще

только при выполнении одноместных операции. Поэтому в последние константы следует ввести в один из регистров памяти или использовать регистр восстановления результата предшествующей операции (в микрокалькуляторах «Электро-

ника Б3-34», «Электроника МК-56» и «Электроника МК-54»).

Перевод программ с языка микрокалькуляторов «Электроника БЗ-34» и микро-ЭВМ «Электроника ДЗ-28» на язык более простых мыкрокалькуляторов «Электроника БЗ-21» дословно, как правило, невозможен. Препятствием является отсутствие у последнего микропрограмм вычисления ряда функций, в частности обратных тригонометрических, а также косвенной адресации и операционного стека.

Наиболее ценным в сложных программах обычно бывает алгоритм вычислений. Поэтому нередко проще разобраться в алгоритме вычислений имеющейся программы, а затем составить нужную программу для микро-ЭВМ, имеющейся

в распоряжении пользователя.

Для облегчения перевода программ в § 1.2 параллельно рассматриваются элементарные приемы программирования для основных типов микро-ЭВМ. Далее описана программирая реализация ряда часто встречаемых расчетов для этих микро-ЭВМ.

1.7. ПОГРЕШНОСТИ ЧИСЛЕННЫХ РАСЧЕТОВ НА МИКРО-ЭВМ

Расчетам на микро-ЭВМ присущи погрешности. Если получаемый результат y отличается от точного y_0 , то погрешность $\Delta y = y_0 - y$. Абсолютной и огносительной погрешностью y называются величины

$$\Delta y = |\Delta y| = |y_0 - y|; \ \delta_{\mathbf{y}} = \Delta y/|y_0|.$$

Иногда задается предельное значение Δy безотносительно к y_0 . Например, если $\Delta y=\pm 1$, то при $y_0=2$ имеем 1< y<3 или $y=2\pm 1$, но уже при $y_0=100$ получим 99< y<101 или $y=100\pm 1$. Для десятичных чисел погрешность часто задается числом верных цифр. Верными называются цифры, если представляемое ими число имеет абсолютную погрешность не более 1/2 младшего разряда (так, при 35,95< x<36,05 верными можно принять три цифры любого x).

Погрешность в общем случае зависит от ряда факторов. Например, она может быть обусловлена неточной математической постацовкой задачи, неточностью принятых моделей компонентов схем и неточностью задания исходных данных.

Ввиду ограниченного числа десятичных разрядов чисел, которыми оперирует микро-ЭВМ, возникает погрешность округления. Обычно заведомо неизвестно, как округляются числа. В этом случае считается, что погрешность округления составляет ∓ 1 младшего разряда.

Каждому методу вычислений присуща методическая погрешность. Методическая погрешность для основных численных методов и причины ее возникновения описываются в гл. 2. Отметим, что погрешность присуща и вычислениям основных функций по встроенным микропрограммам (e^x , $\ln x$, $\sin x$ и т. д.). Обычно она обусловлена заменой бесконечных рядов или цепных дробей, аппроксимирующих эти функции, рядами или целыми дробями с конечным числом членов. Для функций e^x и $\ln x$ методическая погрешность микрокалькулятора «Электроника 63-21» составляет ± 2 , а для остальных функций ± 1 младшего разряда.

В ряде случаев весьма важной является операционная погрешность, т. 6. погрешность, возпикающая при операциях над приближенными числами. В качестве примера отметим, что операционная погрешность алгебраического суммирования, вычитания, умножения и деления равна сумме погрешностей чисел, над которыми выполняются эти операции. Погрешность вычисления сложной функции $f(x_1, x_2, x_3, ..., x_n)$ нескольких переменных может быть оценена с помощью коэффициентов чувствительности S_t этой функции к изменению каждого нараметра $x_1, x_2, x_3, ..., x_t, ..., x_n$. Процедура определения коэффициентов чувствительности описана в § 9.1. При такой оценке не учитываег-

ся статистическое распределение параметров и получается завышенная погрешность вычислений. Более близкой к истинной будет погрещность

$$\delta_f = \sqrt{\sum_{i=1}^n (S_i \ \delta_i)^2},$$

получаемая путем среднеквадратичного суммирования частных погрешностей с учетом чувствительности функций $\int (x_i)$ к изменению каждого параметра x_i .

Для уменьшения операционной погрешности следует выполнять некоторые правила вычислений [2]. При сложении слагаемые целесообразно разбить на группы чисел, близких по порядку величины. Сложение следует начинать с меньших чисел. При умножении рекомендуется умножать меньшее из чисел и большее. Если промежуточный результат $y_i > 1$, то его надо умножить на меньшее, если $y_i < 1$, то на большее из оставшихся чисел и т. д. При вычислении выражений вида abc'(dek) целесообразно чередовать операции умножения и деления, избегая переполнения регистров, возможного при раздельном вычислении произведений abc и dek. Следует всегда избегать вычитания близких чисел, так как результат может попасть в область машинного нуля, что ведет к грубейшим ошибкам (иапример, при его последующем умножении на любое, в том числе большое число)

Вычисляемые выражения нередко удается преобразовать так, чтобы соблюдались эти рекомсидации. Например, выражение $y=(a+b)^2-a^2$, где $b\ll a$, следует представить в виде $y=2ab+b^2$, что исключит вычитание близких чисел $(a+b)^2$ и b^2 . Замена выражения $y=(e^{50x}-e^{-49x})/(e^{49x}-1)$ на равноценное $y=(e^x-1)/(1-e^{-49x})$ позволяет избежать переполнения регистров даже при довольно больших x (при x>4.6 $e^{50x}>9,999\cdot 10^{99}$, т. е. попадает в область машинной бесконсиности). Полезно также нормировать полиномы, уравнения и другие выражения так, чтобы вычислялись числа, дале-

кие от машинного пуля и бесконечности.

ГЛАВА 2

ОСНОВНЫЕ ЧИСЛЕННЫЕ МЕТОДЫ И ИХ ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

2.1. ВЫЧИСЛЕНИЕ И ТАБУЛИРОВАНИЕ СПЕЦИАЛЬНЫХ ФУНКЦИЙ

Некоторые из широкораспространенных специальных функций микрокалькуляторы не могут вычислять по встроенным в них микропрограммам. Однако их можно выразить через доступные для вычислений функции и вычислять по специально составленным программам.

🤾 указанным функциям относятся гиперболические функции, выражаемые

через экспоненциальные [6]:

sh
$$x = (e^x - 1/e^x)/2$$
,
ch $x = (e^x - 1/e^x)/2$,
th $x = \sinh x/\cosh x$,
cth $x = 1/\tan x$

Программа 1. Вычисление гиперболических функций. Ввод: x = PX

Pex P2
$$\uparrow$$
 F1/x $-$ 2 \div P3 C/ Π F2 \uparrow F1/x $+$ 2 \div P4 C/ Π F3 \uparrow F4 \div C/ Π F1/x C/ Π B Π P0

Программа 1 позволяет вычислять на микрокалькуляторе «Электроника БЗ-21» все эти функции для любого х. Фрагменты этой программы можно использовать самостоятельно.

Обратные гиперболические функции (ареафункции) имеют решения в определенных диапазонах изменения аргумента x [6]:

Преграмма 2. Вычисление ареафункций. Ввод: x = PX.

P8 Fx² 1 + Fy ↑ F8 + Pln P2 0 0
P3 P4 P5 F8 1 + P7 1 ↑ F8 - P6
Px < 0 7 F8 Fx² 1 - Fy ↑ F8 + Pln P3
F7 ↑ F6 ÷ /-/ Fy Pln P5 BΠ P+ F7 Px
$$\geqslant$$
 0
P+ F7 ↑ F6 ÷ Fy Pln P4 F2 C/Π BΠ P0

Программа 2, в которой используются условные переходы, обеспечивает установление допустимого интервала изменения x и вычисление тех ареафункций, для которых x нопадает в допустимый для них интервал. Если x выходит за этот интервал, на индикатор микрокалькулятора «Электроника БЗ-21» вытодится члак 00. Функция arshx вычисляется для любого x. Пример вычислений дан в табл. 2.1.

Таблица 2.1 Результаты вычисления ареафункций

х	arshx-PY	archx=P3	arthx=P4	arcthx=P5
1,175201	1	0,583628	00.	1,259472
1,313035	1,086372	0,771936	00.	1
0,761594	0,702396	00.	0,999998	00.
—2	—1,443636	00.	00,	00.

Выше отмечалось, что микрокалькуляторы «Электроника Б3-21» не имеют микропрограмм вычисления обратных тригонометрических функций. Ряд программ для их вычисления описан в [2]. Ограничимся приведением программы 3 (см. табл. 2.1), по которой вычисляется агс $\lg x$ при $x=\pm\infty$ с точностью до 0.09° с помощью нелинейной аппроксимации:

$$\arctan x = \frac{80,67x}{\sqrt{1 + \sqrt{1 + x^2} + 0,805x^2}}.$$

Программа 3. Вычисление обратных тригонометрических функций. Ввод: x -- PX

Остальные функции вычисляются по известным соотношениям.

$$\left. \begin{array}{l} \arcsin x = \arctan \left(x / \sqrt{1 - x^2} \right), \\ \arccos x = \pi / 2 - \arcsin x, \\ \operatorname{arcctg} x = \pi / 2 - \arctan x. \end{array} \right\}$$

При нажатии клавиши С/П получаем $\arctan x = PX = P6$. Остальные функции, если x попадает в область их определения, заносятся в регистры 4,5 и 7. При $x \geqslant 1$ значения $\arccos x$ и агссоs x не вычисляются, а содержимое регистров 4 и

5 не меняются. Результат (угол) получается в градусах. Общирной сферой применения программируемых микс

Обширной сферой применения программируемых микрокалькуляторов является формульный счет и табулирование формул. Число примеров такого применения неограничено. Обычно при табулировании формул программу составляют так, чтобы получались данные для заполнения колонок таблиц. Расчетные формулы целесообразно нормировать. В качестве примера рассмотрим вычисление длительности импульса $t_{\rm H}$ обычного транзисторного ждущего мультивибратора по формуле

$$\frac{t_{\rm N}}{\tau} = \ln \left[2 - \frac{I_{\rm K_0} (R_{\rm S} + R_{\rm K})}{E_{\rm K} + I_{\rm K_0} R_{\rm S}} \right]$$

при различных температурах T, вызывающих изменение обратного тока коллекторного перехода

$$I_{K0}(T) = I_{K0}(20^{\circ}\text{C}) 2$$

где τ — постоянная времени времязадающей RC-цепи; R_{δ} и R_{κ} — сопротивления резисторов в цепи базы и коллектора; T_{γ} — температура удвоения обратного тока коллектора.

Допустим, надо составить таблицу значений T, $I_{\rm K0}$ (T) и $t_{\rm H}/\tau$ при дискретных значениях T, отличающихся на величину $\Delta T = 10^{\rm c}$ С. Сформируем сетку значений T: $T_n = T_{n-1} + 10$. По программе 4 последовательно вычисляются T, $I_{\rm K0}$ (T) и $t_{\rm H}/\tau$ согласно формулам и можно составить требуемую таблицу (табл. 2.2) при нажатиях единственной клавиши С/П.

Программа 4. Вычисление T, I_{K0} (T) и t_{H}/τ транзисторного мультивнбратора (ввод $T_{H}=P2$, $T_{y}=P3$, I_{K0} (20° C) = P4, $R_{0}=P5$, $R_{E}=P6$, $E_{K}=P7$)

Таблица 2.2

Результаты расчета по программе 4 при

$$T_{\rm H} = -20^{\circ} \,{\rm C}$$
, $T_{\rm y} = 8^{\circ} \,{\rm C}$, $I_{\rm K\,0} \,(20^{\circ} \,{\rm C}) = 1 \cdot 10^{-8} \,{\rm A}$, $R_{\rm B} = 10^{5} \,{\rm Om}$, $R_{\rm K} = 5, 1 \cdot 10^{3} \,{\rm Om}$, $E_{\rm K} = 10 \,{\rm B}$

- K						
T. °C	20	-10	0	+10	+ 20	
$I_{K0}(T), 10^{-8} \text{ A}$ t_{H}/τ	3,125 0,692982	7,432544 0,692755	17,67768 0,692219	42,04481 0,690942	100 0,6879 29	

Описанные и подобные им расчеты легко выполняются и на микрокалькуляторах других типов. Они относятся к относительно простым, хотя и весьма распространенным.

2.2. РЕШЕПИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕПИЙ

Вычислительные возможности программируемых микрокалькуляторов позволяют автоматически вычислять неизвестные систем из двух и трех линейных уравнений. Программа 5 обеспечивает решение системы из двух уравнений

$$a_1 x + b_1 y = c_1, a_2 x + b_2 y = c_2$$

при последовательном вводе по столбцам a_1 , a_2 , b_1 , b_2 , c_1 и c_2 (после ввода каждого коэффициента нажимается только клавиша С/П). Значения x и y получаются соответственно в регистрах X и Y.

Программа 5. Решение системы из двух линейных уравнений на микрокалькуляторе «Электроника БЗ-21»

Для системы

$$2x - y = 3, 3x + y = 7, 3$$

введя коэффициенты 2,3. — 1,1, 3 и 7, получим x=2=PX. Нажав клавишу XY, получим $y=\pm 1$.

На микрокалькуляторах «Электроника Б3-21» пельзя полностью автоматически вычислять неизвестные x_1 , x_2 и x_3 системы из трех линейных уравнений

$$a_1x_1 + a_2x_2 + a_3x_3 = a_1, a_5x_1 + a_6x_2 + a_7x_3 = a_8, a_9x_1 + a_{10}x_2 + a_{11}x_3 = a_{12}.$$
 (2.1)

Однако на нем можно вычислить главный определитель этой системы

$$\Delta = \left| \begin{array}{ccc} a_1 & a_2 & a_2 \\ a_5 & a_6 & a_7 \\ a_9 & a_{10} & a_{11} \end{array} \right|$$

и вспомогательные определители, получаемые заменой первого, второго и третьего столбцов столбцом свободных членов $a_4,\ a_8$ и a_{12} :

$$\Delta_{1} = \begin{vmatrix} a_{4} & a_{2} & a_{3} \\ a_{8} & a_{6} & a_{7} \\ a_{12} & a_{10} & a_{11} \end{vmatrix}, \quad \Delta_{2} = \begin{vmatrix} a_{1} & a_{4} & a_{5} \\ a_{5} & a_{8} & a_{7} \\ a_{9} & a_{12} & a_{11} \end{vmatrix}, \quad \Delta_{3} = \begin{vmatrix} a_{1} & a_{2} & a_{4} \\ a_{5} & a_{6} & a_{8} \\ a_{9} & a_{10} & a_{12} \end{vmatrix}.$$

Тогда по методу Крамера [7]

$$x_1 = \Delta_1 / \Delta$$
, $x_2 = \Delta_2 / \Delta$ и $x_3 = \Delta_3 / \Delta$. (2.2)

Определители Δ , Δ_1 , Δ_2 и Δ_3 могут вычисляться на микрокалькуляторе «Электроника БЗ-21» по программе БП84, приведенной в приложении 1 и используемой при параболической аппроксимации кривых с минимизацией среднеквадратичной погрешности методом наименьших квадратов. Значения x_1 , x_2 и x_3 вычисляются по формулам (2.2) в непрограммируемом режиме.

Большее число шагов программы в микрокалькуляторе «Электроника ВЗ-34» и большее число регистров памяти позволяют ввести в него полную матрицу ое эффициентов системы (2.1), расположив их в регистрах в естественном порядки расположения клавиш:

$$\begin{vmatrix} a_1 = \mathsf{P7} & a_2 = \mathsf{P8} & a_3 = \mathsf{P9} & a_4 = \mathsf{PA} \\ a_5 = \mathsf{P4} & a_6 = \mathsf{P5} & a_7 = \mathsf{P6} & a_8 = \mathsf{PB} \\ a_9 = \mathsf{P1} & a_{10} = \mathsf{P2} & a_{11} = \mathsf{P3} & a_{12} = \mathsf{PC} \end{vmatrix} \ ,$$

а также реализовать вычисления x_1 , x_2 и x_3 методом Крамера по программе ПП1/34 пакета программ, приведенных в приложении 2. Перед пуском этой программы следует очистить операционный стек, нажав клавиши $c_{\mathbf{x}}$ \uparrow \uparrow \uparrow В/О. Для системы

$$4x_1 + 0.24x_2 - 0.08x_3 = 8$$

$$0.09x_1 + 3x_2 - 0.15x_3 = 9$$

$$0.04x_1 - 0.08x_2 + 4x_3 = 20$$

вычисления дают $x_1=1,9091982$; $x_2=3,1949644$ и $x_3=5.0448073$ при времени счета около I мин. В программе ПП1/34 регистры стека используются кал буферные, при этом обеспечивается последовательная замена столбцов определителя Δ столбцами свободных членов. Определители вычисляются с обратным знаком, что не сказывается на знаке x_1 , x_2 и x_3 .

Метод Крамера в общем случае не экономичен по числу арифметических операций. Лучше результаты дает метод исключения переменных при прямом ходе — метод Гаусса. Прямой ход реализуется алгоритмом:

$$b = a_5/a_1$$
, $a_6 = a_6 - a_2b$, $a_7 = a_7 - a_3b$, $a_8 = a_8 - a_4b$, $b = a_9/a_1$, $a_{10} = a_{10} - a_2b$, $a_{11} = a_{11} - a_3b$, $a_{12} = a_{12} - a_4b$, $b = a_{10}/a_6$.

Здесь запись вида $a_6=a_6-a_2b$ означает, что выражение (a_6-a_2b) записывается после вычислений в регистр памяти, где раньше был коэффициент a_6 . Затем находится оставшаяся переменная x_3 и организуется обратный ход:

$$x_3 = (a_{12} - a_8 b)/(a_{11} - a_7 b),$$

$$x_2 = (a_8 - a_7 x_3)/a_6, x_1 = (a_4 - a_2 x_2 - a_3 x_3)/a_1.$$

Программа, реализующая метод Гаусса на микрокалькуляторе «Электроника БЗ-34», дана в приложении 2 (ПП2/34). Сравнение ее с программой ПП1/34 показывает, что для системы из трех линейных уравнений метод Гаусса не дает заметного выигрыша по программной реализации по сравнению с методом Крамера. Ряд других программ, в том числе реализующих итерационные методы решения систем линейных уравнений, описан в [2]. Там же описана методика решения в полуавтоматическом режиме систем из более трех уравнений.

2.3. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Нелинейные уравнения легко приводятся к виду

$$F(x) = 0^*. (2.3)$$

Расчет корней x_i (или одного кория x) сводится к установлению интервала [a,b] существования корня, в пределах которого F(x) меняет знак один раз. Для этого применим метод проб, при котором задаются рядом значений x и определяют знаки F(x). Если между какими-то значениями x=a и x=b F(x) получается с разными знаками, то полагают, что интервал существования корня [a,b] найден. Далее сужением [a,b] добиваются уточнения корня с заданной степенью точности

^{*} Программы для решения алгебраических уравнений, у которых $F\left(x\right)$ — степенной многочлен одной переменной x, даны в книге [2].

При методе простых итераций (2.3) приводится к виду x=f(x). Взяв нулевое приближение $x=x_0$, получим $x_1=f(x_0)$, при $x=x_1$ получим $x_2=f(x_1)$ в т. д., т. е. в общем случае итерационный процесс описывается уравнением

$$x_{n+1} = f(x_n). (2.4)$$

Программа 6. Метод простых итераций. Ввод: $x_0 = P2$.

P2 F2 ... † F2 XY P2 - Px = 0 F0 F2 C/
$$\Pi$$

Программная реализация этого метода на микрокалькуляторе «Электроника Б3-21» (программа 6) весьма проста, занимает один регистр памяти (в нем формируются текущие значения х) и всего 11 шагов. Итерационный процесс еходится, если выполняется условие [8-13]

$$|f'(x)| < 1.$$
 (9.5)

Скорость сходимости оказывается тем выше, чем сильнее выполняется это неравенство.

Для электронных цепей с резко нелинейными приборами (диодами, транвисторами и т. д.) условие (2.5) часто не соблюдается (в этом случае х — напряжение или ток). Это наряду с необходимостью предварительной оценки условия (2.5) ограничивает применимость данного метода.

Для ускорения сходимости используется метод Ньютона (метод касательных). При этом методе шаг итераций, т. е. разность $(x_{n+1}-x_n)$, делается обратно пропорциональным производной f'(x), т. е.

$$x_{n+1} = x_n - f(x_n)/f'(x_n).$$
 (2.6)

Сходимость обеспечивается при

$$f(x) f''(x) > 0.$$
 (2.7)

Программная реализация метода Ньютона описана в [2]. Однако его практическое применение затруднено из-за необходимости оценки производных f'(x) и f''(x), а также выполнения условия (2.7). Это относится и к другому классическому методу — методу хорд, при котором

$$x_{n+1} = x_n - \frac{f(x_n) (b-x_n)}{f(b)-f(x_n)}$$
 , или $x_{n+1} = x_n - \frac{f(x_n) (x_n-a)}{f(x_n)-f(a)}$,

причем берется одна из формул в зависимости от того, на каком конце интервала [а, b] соблюдается условие сходимости (2.7). Оба метода чувствительны к погрешностям округления, а скорость сходимости их сильно зависит от вида функции f(x) и шприны интервала [a, b].

При практических расчетах на микро-ЭВМ предпочтение следует отдавать методам, имеющим улучшенную или даже безусловную сходимость при широком интервале $[a,\ b]$. Например, в большинстве электронных устройств с нелинейными приборами, имеющими монотонные вольт-амперные характеристики, целесообразно считать a=0, а b=E, где E — напряжение питания. Тогда корень $\overline{U}=\overline{x}$ заведомо лежит в интервале [0,E]. Обычно известен и знак F (U) при U= x = 0 или U = x = E.

При монотонных F(x) на интервале [a, b] абсолютную сходимость обеспечивает метод половинного деления. При его применении не требуется анализ условий сходимости, преобразований функции F (x) и оценки производных f(x). При методе половинного деления интервал [a, b] делится пополам. Затем выбирается тот полуинтервал, на котором $F\left(x\right)$ меняет знак, он вновь делится пополам и т. д. Выбор интервала осуществляется сменой границы — берется та, на которой знак F(x) противоположен знаку F(x) в середине интервала. Программа 7. Метод половинного деления. Ввод. $x_{x} = P2$, $\Delta x_{0} = P3$, n = P3

= P4.

Реализация метода половинного деления (программа 7) описана в [2] Она ванимает 26 шагов и 3 регистра памяти. В регистр 2 заносится левая граница интервала $x_n = a$, в регистр 3 — начальная ширина интервала изоляции корня $\Delta x_0 = (b-a)$, в регистр 4 — любое число (например, ∓ 1) со знаком, совпалающим со знаком $F(x_n)$.

K сожалению, эта реализация метода половинного деления неэкономичиа по числу шагов программы и числу занятых регистров памяти. Счет останавливается по критерию максимальной точности, т. е. в пределах точности вычисления функции F(x) верны все 7—8 знаков результата. Такая точность в практике расчета нелинейных цепей явно избыточна и ведет к большому времени вычислений, даже когда нужно знать результат с точностью до p=2...4 верных знаков. Ввод критерия окончания счета вида $|x_{n+1}-x_n| < \varepsilon$ усложняет программу и требует использования еще одного регистра памяти для записи ε , отличного от машинного нуля.

Метод поразрядного приближения к корню можно рассматривать как метод проб с поразрядным формированием значений x_n . Он реализуется следующим

обобщениым алгоритмом [14]:

1. Формируется ряд значений
$$x_{n+1} = x_n + \Delta x_M$$

с шагом Δx_N , вначале (при N=1) равном Δx_1 .

2. Вычисляется $F(x_{n+1})$ и проверяется условие

$$F(x_{n+1}) < 0. (2.8)$$

3. Если (2.8) выполняется, организуется возврат к п. 1.

4. Если (2.8) не выполняется, от значения x_{n+1} отнимается Δx_N (т. е. делается шаг назал, компенсирующий лишний шаг вперед), после чего Δx_N делится на показатель разрядности M метода, т. е.

$$\Delta x_{N+1} = \Delta x_N / M.$$

5. Проверяется условие

$$\Delta x_{N+1} < \varepsilon,$$
 (2.9)

п если оно не выполняется, организуется возврат к п. 1.

6. Если (2.9) выполняется, счет прекращается и получается значение \overline{x} с точ-

ностью до є.

При M=2 метод поразрядного приближения аналогичен методу половинного деления, если взять $\Delta x_1=\Delta x_0$. При $\Delta x_1<\Delta x_0$ метод поразрядного приближения реализует выделения интервала изоляции корня x методом проб с равноотстоящими значениями x_n с последующим уточнением его методом половинного деления.

Особо следует отметить случай, когда M=10, т. е. реализацию метода подекадного приближения. При этом значении Δx_1 целесообразно брать равным условной единице измерения (например, 10 В, 1 В, 0.1 В и т. д.). В последующем Δx_1 уменьшается в 10, 100, 1000 раз и т. д. Если учесть, что наиболее вероятной цифрой каждого десятичного разряда является цифра 5 (средняя между 0 и 9), то с учетом двух лишних шагов при каждой смене Δx_N число итераций составит

$$n \approx (5+2) p = 7p.$$

Строгий учет n сложен. Отметим, что с ростом M растет число итераций с шагом Δx_N , но сам шаг меняется реже. При малых M меньше число итераций с шагом Δx_N , но растут потери времени счега из-за увеличения числа операций при частой смене Δx_N , сопровождаемой двумя «лишними» шагами. Практическая проверка показывает, что обычно оптимальное значение M составляет 3—5. При подекадном приближении время вычисления зависит от \overline{x} . Опо минимально, если $\overline{x}=0$, и максимально, если все знаки \overline{x} девятки.

Программа 8. Полуавтоматический метод подекадного приближения. Ввод: $x_{\rm p} = P2$, $\Delta x_{\rm 1} = P3$.

F2
$$\uparrow$$
 F3 + P2 Px < 0 P0 F2 \uparrow F3 - P2 C/ Π F3 1 0 \div P3 \bullet \bullet \bullet P1

Программа 8 реализует метод подекадного приближения с выдачей поочередно каждой цифры результата при каждом нажатии клавиши С/П. Эта программа занимает 20 шагов и 2 регистра (x_n) берется из регистра 2). В регистр 2 перед пуском программы заносится граница x_{r} интервала изоляции корня, а в регистр 3 — начальное значение шага Δx_1 . Пользователь имеет возможность оперативно останавливать счет, если приближенное значение \overline{x} далеко от нужного или если достигнутая точность х достаточна. На практике это существенно уменьшает время вычислений при p=2...4.

Программа 9. Автоматический метод подекадного приближения. Ввод:

 $x_r = P2$, $\Delta x_1 = P3$.

Программа 9 обеспечивает выдачу результата с точностью до $\epsilon=10^{-3},$ вписанного в нее. Изменив показатель степени 3, можно легко перестроить программу под другую точность \overline{x} . Программа занимает 26 шагов и 2 регистра памяти. Отметим, что программы 9 и 10 выдают на индикатор все верные цифры результата, что избавляет пользователя от наблюдения последующих произвольных цифр, получаемых при $M \neq 10$.

Программа 10. Метод поразрядного приближения. Ввод: $x_r = P2$, $\Delta x_1 = P3$,

 $\varepsilon = P4$.

F2 ↑ F3 + P2 ...
$$Px < 0$$
 P0 F2 ↑ F3 - P2 F3 $M \div P3$ ↑ F4 - $Px < 0$ P0 F2 C/Π

Программа 10 позволяет оперативно менять в и реализует поразрядное приближение с М, вписанным в программу. Значение М можно по желанию изменять В общем случае мантисса \overline{x} выдается с 7—8 разрядами, но точность результата определяется величиной є (при в = 10-3 точны три знака после запятой). Эта программа занимает 23 шага и 3 регистра памяти.

Программа 11. Метод поразрядного приближения по критерию максимальной точности. Ввод: $x_r = P2$. $\Delta x_1 = P3$.

F2
$$\uparrow$$
 F3 + P2 Px < 0 P0 F2 \uparrow F3 - P2 F3 M \div P3 Psin Px = 0 P0 F2 C/ Π

Программа 11 реализует критерий максимальной точности, т. е выдает результат с точностью до 1 последнего знака мантиссы. Остановка производится фрагментом программы Psin, Px=0 P0 F2 C/П при уменьшении Δx_n до машинного нуля. Эта программа занимает 21 шаг и 2 регистра памяти.

Для контроля и сопоставления описанных программ вычислим прямое напряжение \overline{U} на диоде, подключенном через резистор R к источнику питания E Haпряжение $\overline{U}=\overline{x}$ в этом случае определяется из решения нелинейного уравнения $(E-\overline{U})/R=I$ $(\overline{U})=0$, где I $(\overline{U})=I_0$ $({\rm e}^{v\overline{U}}-1)$ — вольт амперная характеристика диода. Таким образом, (2.3) имеет вид

$$F(\overline{U}) = E - \overline{U} - RI_0 \left(e^{\sqrt{U}} - 1 \right) = 0.$$

Фрагмент программы, по которому вычисляется F(U) при $E={\rm P5},\ R={\rm P6},$ $I_0 = P7$ и v = P8 следующий:

F2
$$\uparrow$$
 F8 \times Pe^x 1 \uparrow F7 \times \uparrow F6 \times \uparrow F2 $+$ $/-/$ \uparrow F5 $+$

Лля обеспечения сходимости метода простых итераций можно перейти от жспоненциальной формы записи вольт-амперной характеристики диода к догарифмической. Тогда

$$i_{n+1} = \frac{E - U(I_n)}{R} = \frac{E - v^{-1} \ln (I_n/I_0 + 1)}{R} ,$$

а в программу 6 надо вписать фрагмент (1/ ν = P3, I_0 = P4, E = P5, R = P6)

$$\uparrow$$
 F4 \div 1 + Pin \uparrow F3 \times P8 F5 \uparrow F8 - \uparrow F6 \div \uparrow

Метол простых итераций дает схождение к корню в этом случае с двух сторон. т. е. приближения $U_1,\ U_2,...,\ U_{n+1}$ поочередно становятся то больше, то меньше \overline{U} Иногла это нежелательно. В частности, в этом случае невозможна остановка программы по простому критерию заданной точности $(U_n - U_{n+1}) < \varepsilon$. Этого недостатка не имеет метод итераций с усреднением нелинейной зависимости U(I) «диодного» вида или I(U) «пентодного» вида на каждом шаге итераций. Процесс итераций для зависимости U(I), проиллюстрированный на

рис. 2.1, а, соответствует уравнению

$$I_{n+1} = \frac{E}{R + R_{\text{nep}}} = \frac{E}{R + U(I_n)/I_n}$$
,

где $R_{
m ncp}=U\,(I_n)/I_n$ — усредненное (статическое) сопротивление нелинейного прибора, определяемое наклоном прямых $\partial I,\,\partial Z,\,\partial S$ и т д. Для прибора с нелинейной зависимостью I (U) «пентодного» типа (рис. 2.1, 6)

$$U_{n+1} = E \frac{R_{nep}}{R_{nep} + R} = E / \left[1 + \frac{RI(U_n)}{U_n} \right].$$

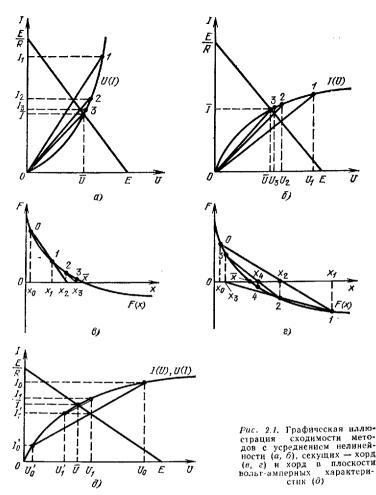
При первом приближении $I_1>\overline{I}$ (рис. 2.1, a) и $U_1>\overline{U}$ (рис. 2.1, b) значения I_n и U_n монотонно стремятся к \overline{I} и \overline{U} . Сходимость возможна и при $0< I_1<\overline{I}$ или $0 < U_1 < \overline{U}$.

При максимальной точности вычислений число итераций метода с успелнением нелинейности в 1,5-2 раза больше, чем у метода простых итераций. Однако если в программу 6 вместо операции — Рх = 0 ... ввести операцию — Psin Px = 0 ... нли — \uparrow F7 — Px < 0 ... ($\epsilon = P7$), то для разумной точности 8 — время вычисления методом с усреднением нелинейности можно уменьшить в 2—4 раза.

В табл 2.3 сопоставлены результаты расчета \overline{U} для цепи с диодом, полученные различными методами при $E=0.5~\mathrm{B},~R=100~\mathrm{OM},~I_0=10^{-5}~\mathrm{A},~v=20/\mathrm{B}.$

Таблица 2.3 Сравнение результатов расчета \overline{U} различными методами

Программа	Метод	\overline{U} , B	Время счета $t_{\rm c}$, с
6	Простых итераций	0,2717421	75
[′] 6	Итераций с усреднением нелиней-	0,2717421	120
7	Половинного деления	0,2717423	214
8	Подекадного приближения (M=10)	0,2717423	200
9	Подекадного приближения (M=10)	0,2717423	180
10	Поразрядного приближения (M=3)	0,2717421	140
11	Поразрядного приближения $(M=3)$	0,2717421	140



 $\Delta x_1 = 0.1 \; \mathrm{B}$ и реализации максимальной точности. Согласно приведенным данным при реализации максимальной точности методы половинного деления и подекадного приближения примерно одинаковы по затратам гремени на вычисление одного кория. Метод поразрядного приближения при M=3 дает несколько меньшее время вычисления. При $\varepsilon=10^{-8}\,$ программы $\,8\,$ и $\,9\,$ позволяют получить результат за $t_{\rm c} \approx 80...85$ с. Программная реализация методов поразрядного приближения несколько проще, чем методов половинного деления. Достоинством последнего (программа 7) является возможность вычисления корня при функции F(x), нарастающей в пределах интервала [a,b] или падающей с ростом x без перестройки команд условных переходов.

Микрокалькуляторы «Электроника БЗ-34» позволяют реализовать более сложные методы, обеспечивающие ускоренную или гарантированную сходимость. Так, используя итерационную формулу (2.6), можно избавиться от необходимости вычисления производной f'(x), заменив касательную секущей или хордой, проходящей через точки $[x_{n-1},f(x_{n-1})]$ н $[x_n,f(x_n)]$. Тогда получим реализацию комбинированного метода секущих — хорд с помощью формулы

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

При выборе $x_0 < x_1 < \overline{x}$ этот метод дает быструю монотонную сходимость как метод секущих (рис. 2.1, в). Сходимость возможна и при $x_0 < \overline{x}$ и $x_1 > x$. но при этом она немонотонна (рис. 2.1, г). При реализации этого метода надо вадаваться двумя начальными приближениями: нулевым x_0 и первым x_1 . Останавливать вычисления следует по критерию

$$(x_{n+1}-x_n)^2 < \varepsilon^2$$
 или $[f(x_{n+1})-f(x_n)]^2 < \varepsilon^3$.

Выструю сходимость обеспечивает итерационный метод Эйткена — Стеффенсона. При этом методе задаются начальным приближением x_0 и определяют два следующих приближения: $x_1 = f(x_0)$ и $x_2 = f(x_1)$. После этого находится уточненное значение

$$x_3 = (x_0 x_2 - x_1^2)/(x_0 - 2x_1 + x_2).$$

Если $(x_{\hat{3}}-x_0)^2<arepsilon^2$, вычисления останавливают, в противном случае за новое пулевое приближение принимают значение x_3 и описанный выше итерационный

процесс повторяется.

Гарантированная сходимость обеспечивается при решении нелинейных уравнений методом Монте-Карло. В этом случае программно геперируются слууравнении методом поите-карио. В этом сиз программию тепераруются случайные числа V_n с равномерным распределением на интервале [0,1], которые затем пересчигываются в интервал [a,b] (см. далее § 9.4). Для любого случайного числа x_n в интервале [a,b] вычисляется $F(x_n)$. Если (для функции с F(a)>0) $F(x_n) > 0$, то значение x_n приписывается границе a, если $F(x_n) < 0$, то значе $r(x_n) > 0$, то значение x_n приписывается границе b. Таким образом, интервал [a,b] сужается с обенж концов по случайному закону. Вычисление прекращается, если $(b-a) < \varepsilon$.

В ППЗ/З4 даны программы решения нелинейных уравнений. Для типовых задач, рассмотренных в данной книге, время вычисления методами секущих жорд и Эйткена — Стеффенсона примерно в 2 и 4 раза меньше, чем методами половинного деления (или Монте-Карло). Однако программная реализация первых

существенно сложнее.

Отметим некоторые дополнительные методы улучшения сходимости. Так, если метод простых итераций для цепи с «пентодной» зависимостью $I\left(U\right)$ не сходится, то можно представить $I\left(U\right)$ обратной функцией, например введя в рассмотрение вспомогательную нагрузочную прямую, характеризующуюся сопротивлением $R_n = (E-U_n)/I(U_n)$, и организовав итерационный процесс по формуле

$$U_{n+1} = U_n R_n / R = U_n (E - U_n) / (R I(U_n)).$$

При $n \to \infty$ $U_{n+1} \to U_n$, $R_n \to R$, что возможно, если $\underline{U}_{n+1} \to \overline{U}$. Сходимость

возможна при начальном приближении $U_0 < \overline{U}$ и $U_0 > \overline{U}$.

Выструю сходимость обеспечивает метод с усреднением нелинейности и сдвигом обеих границ интервала изоляции корня к корию (рис. 2.1, д). Его реализация требует, чтобы функция $I\left(U\right)$ аналитически была определена и как $U\left(I\right)$. Задавшись двумя приближениями $U_0>\overline{U}$ (в частности, $U_0=E$) и $l_0'< I$ (в частности, $l_0'=0$) итерационный процесс можно описать выраженнями

$$R_{n} = (U_{n} - U'_{n})/(I_{n} - I'_{n});$$

$$I'_{n+1} = (E - U'_{n} + I_{n} R_{n})/(R_{n} - P_{n});$$

$$U_{n+1} = E - I'_{n+1} R.$$

При $U_0=E,\,I_0'=0$ и $\epsilon=10^{-7}\,$ этот метод имеет наименьшее число итераций: всего пять — семь, Однако на каждой итерации нелинейная функция вычисляется дважды чэк $I\left(\widehat{U}_{n}\right)$ н $U\left(I_{n}\right)$ Поэтому выигрыш по времени вычислений оказывается незначительным. Сходимость этого метода моногонная.

2.4. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ

Основной задачей численного интегрирования является вычисление собственных определенных интегралов вида

$$I = \int_{a}^{b} f(x) dx.$$

Опо равносильно вычислению площади фигуры (рис. 2.2, a), ограниченной осью x, кривой f(x) и отрезками прямых x=a и x=b. Обычно интервал [a,b] разбивается на N интервалов с шагом

$$h = \Delta x = (b - a)/N.$$

В пределах шага h функция f (x) аппроксимируется полиномом той или иной степени, что позволяет вычислить интеграл в пределах h аналитически. Погрешность аппроксимации приводит к появлению остаточного члена R — разности между вычисленным и действительным значениями интеграла. Величина R определяет погрешность выбранного метода численного интегрирования. В простейшем методе прямоугольников (рис. 2.2,6) интеграл берется как

В простейшем методе прямоугольников (рис. 2.2,6) интеграл берется как сумма площадей элементарных прямоугольников с основанием $h = \Delta x$ и высотой $y_i = f(x_i)$:

$$I = \sum_{i=0}^{N} y_i \, \Delta x = \frac{b-a}{N} \sum_{i=0}^{N} y_i.$$

Этот метод имеет низкую точность и применяется крайне редко.

Значительно более высокую точность зает модифицированный метод примоугольшиков, при котором y_i берется в середине соответствующего отрезка Δx (рис. 2.1, 6):

$$I = \sum_{i=0}^{N} y\left(x_i + \frac{\Delta x}{2}\right) \Delta x = \frac{b-a}{N} \sum_{i=0}^{N} y\left(x_i + \frac{\Delta x}{2}\right).$$

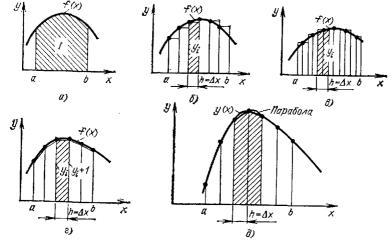


Рис. 2.2. Графическая иллюстрация к методам численного интегрипования: a — идеальное; b — простым методом прямоугольников; a — методом трапеций и Симпсова

В этом случае остаточный член

$$R = h^2 (b - a) f_M''(\xi) / 24,$$

где $f_M^m(\xi)$ — максимальное значение второй производной на отрезке $[a\ b]$: ξ вначение х, при котором производная максимальна.

При методе трапеций (рис. 2.1, z) f(x) аппроксимируется в пределах шага Δx прямой, а интеграл вычисляется как сумма площадей элементарных трапеций

$$I = \sum_{i=0}^{N} \frac{y_i + y_{i+1}}{2} \Delta x = \frac{b-a}{2N} \sum_{i=0}^{N} (y_i + y_{i+1})$$

с остаточным членом

$$R = -h^2 (b - a) f_M''(\xi)/12.$$

Широкое применение нашел метод Симпсона — параболической аппроксима. ции f(x) в пределах интервала $2\Delta x$ (рис. 2.1, ∂). В этом случає

$$I = \frac{\Delta x}{3} [f(a) + 4f(a + \Delta x) + 2f(a + 2\Delta x) + 4f(a + 3\Delta x) + ... + 4f(b - \Delta x) + f(b)]$$

при остаточном члене

$$R = -Nh^5 f_M^{IV}(\xi)/90$$
.

Число интервалов Δx при методе Симпсона должно быть четным. Метод дает точные μ езультаты, если f (x) описывается полиномом до 3-й степени включительно.

Еще более высокую точность дает формула Уэддля для f(x), описываемых полиномом до 6-й степени [6]:

$$I = \int_{x_0}^{x_0} f(x) dx = \frac{3h}{10} (y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6), \qquad (2.10)$$

где $y_0...y_6$ — ординаты f(x); $h = (x_6 - x_0)/6$. Остаточный член формулы Уэддля

$$R \leq -h^7 \left[10 f_M^{VI}(\xi) + 9h^2 f_M^{VIII}(\xi)\right] / 1400.$$

Высокую точность интегрирования обеспечивает метод Гаусса. При нем f(x) преобразуется в функцию f'(t), определенную на отрезке [-1, 1], причем абсинссы х; ординат ее подбираются как корни полинома Лежандра с тем, чтобы получалась высокая точность интегрирования. Процедура интегрирования методом Гаусса довольно проста [12,13]:

1) производится замена переменной х и находится

$$x_i = (b + a)/2 + (b - a) t_i/2 \ (i = 1.2,3,...,n),$$

где t_i — нули полинома Лежандра заданной степени n, определяющей число ординат / (x) в пределах шага $h = \Delta x$;

2) находятся коэффициенты A_i ;

3) определяется интеграл

$$I = \int_{a}^{b} f(x) dx = \frac{b-a}{2} \sum_{i=1}^{n} A_{i} f(x_{i}).$$
 (2.11)

Значения t_i и A_i для $n\leqslant 4$ даны в табл. 2.4.

Зиачения t_i и A_i при интегрировании методом Гаусса

n	i	tı	Ai
1 2	1 1,2	0 ∓0,57735027 (∓√1/3)	2
3	1,3	$\mp 0.77459667 \ (\mp \sqrt{0.6})$	5/9 8/9
4	1,4 2,3	〒0,86113631 〒0,33998104	0,347854 84 0,65214516

Остаточные члены при интегрировании методом Гаусса для n=2, o и 4 определяются выражениями [13]:

$$R_{2} = \frac{1}{135} \left(\frac{b-a}{2}\right)^{5} f_{M}^{\text{IV}}(\xi);$$

$$R_{3} = \frac{1}{15750} \left(\frac{b-a}{2}\right)^{7} f_{M}^{\text{VI}}(\xi);$$

$$R_{4} = \frac{1}{3472875} \left(\frac{b-a}{2}\right)^{9} f_{M}^{\text{VIII}}(\xi).$$

Из них слетует, что метод Гаусса дает точное значение интеграла, если f(x) аппроксимируется полиномом до (2n-1)-го порядка. При n=1 имеем результат, апалогичный получаемому модифицированным методом прямоугольников.

Точность методов Уэддля и Гаусса также повышается разбиением предела интегрирования [a, b] на N частей. Тогда (2.10) и (2.11) последовательно применяются для новых (суженных) пределов интегрирования N раз с суммированием

полученных частных интегралов.

Сравнение описанных методов показывает, что чем выше порядок метода, тем выше точность (меньше остаточный член R), но тем сложнее расчетные формулы и, как следствие сложнее их программная реализация. Следует отметить, что точность интегрирования с повышением порядка метода растет быстрее, чем время вычислений. Поэтому при заданной (не слишком низкой) точности меньшее время вычислений обеспечивают методы с высоким порядком (Симпсона, Уэддля. Гаусса).

Программа 12. Метод прямоугольников. Ввод: h = P2, (a + 0.5h) = P3, b = P4, 0 = P5, данные f(x) при x = P3.

...
$$\uparrow$$
 F2 \times \uparrow F5 + P5
F3 \uparrow F2 + P3 \uparrow F4 - Px \geqslant 0 P0 F5 C/ Π

Программа 13. Метод трапеций. Ввод: a=P2, h=P3, b=P4, 0=P5 (P6 занят), дацные f(x) при x=P2.

Программа 14. Метод Симпсона. Ввод: $a=P2,\ b=P3,\ N=P4$ (P8 занят), данные f(x) при x=P3.

Программа 15. Упрощениая реализация метода Симпсона. Ввод: a=P2, b=P3, N=P4, h=(b-a)/N=P5 (P8 занят).

Для получения / нажать клавиши F8 3 ÷ ↑ F5 ×.

• Программа 16. Интегрирование табличных моделей методом Симпсона. Ввод: h = P2, $y_i = PX$. После набора последнего y_i нажать клавиши B/O и C/Π .

В программах 12—16 на микрокалькуляторе «Электроника Б3-21» реализуются простой и модифицированный методы прямоугольников, метод трапеций и три варианта метода Симпсона [2]. При реализации простейшего метода прямоугольников по программе 12 в регистр 3 записывается предел а, а не величина (a+0.5h). В табл. 2.5 приведены результаты вычислений контрольного примера

$$I = \int_{0}^{1} 10e^{-x} dx = 10 - \frac{10}{e} = 6,321205$$
 (2.12)

при различном числе N участков разбиения [a,b]. Преимущество метода Симпсона по точности перед остальными в данном случае очевидно. Однако его программная реализация занимает 47 шагов и 4 регистра памяти. Следовательно, для записи f(x) в программу остается только 13 шагов и 3 регистра (не считая стекового). Поэтому при вычислениях на микрокалькуляторе «Электроника БЗ-21» метод Симпсона применим только для интегралов с очень простыми подынтегральными функциями. При увеличении N с 10 до 50 время вычисления этим методом возрастает (для подобных приведенному примеров) с 1 до 5—8 мин. Текущие значения x берутся из регистра 3, регистр 8 является суммирующим.

Таблица 2.5 Результаты вычисления интеграла (2.12) различными методами

	I при N						
Мстод	4	10	20	50			
Прямоугольников модифицированный Трапеций Симпсона	6,304773 6,354094 6,321342	6,318572 6,326472 6,321209	6,320547 6,322521 6,321205	6,321098 6,321414 6,321204			

Значительно большие возможности для численного интегрирования имеют микрокалькуляторы «Электроннка БЗ-З4». В приложении 2 даны программы для этого микрокалькулятора, реализующие методы Симпсона, Уэддля и Гаусса (для n=2 и 3). В реализации метода Симпсона (программа ПП4/34) для записи f(x) остается 57 шагов и 10 регистров памяти (включая регистр В, из которого берутся текущие значения x). В качестве суммирующего используется регистр С. Программа ПП5/34 реализует вычисления по формуле Уэддля при разбивке пределов интегрирования на N частей. Для записи f(x) остается 38 шагов и 11 регистров (включая регистр A, из которого берутся текущие значения x). В программах ПП6/34 и ПП7/34, реализующих метод Гаусса при n=2 и 3 соответственно, также предусмотрена возможность разбиения интервала [a,b] интегрирования на N частей. Для записи f(x) в них остаются соответственно 44 и 33 шага программы.

Сравиение результатов интегрирования различными методами на микрокалькуляторе «Элекроника Б3-34»

Интеграл I и его точное значение	Программа и метод	N/n	Значени е / расчетное	Время счета t _c , мин
$\int_{1}^{5} \frac{x^{3}}{x^{4} - 100} dx = 0,9074539$	ПП4/34 Симпсоиа ПП5/34 Уэддля ПП6/34 Гаусса ПП7/34 Гаусса	8/2	0,90813815 0,907764 0,90753062 0,9065265 0,90743982 0,90745405 0,90737762 0,90745076 0,90745383 0,90745631	1,2 2,4 8,5 1,2 2,4 5 1,5 3,5 6,5
$\int_{0}^{1} \sqrt{2x+1} dx = 1,3987175$	ПП4/34 Симпсона ПП5/34 Уэддля ПП6/34 Гаусса ПП7/34 Гаусса	4/3 8/3 16/3 64/3 1/7 2/7 2/2 4/2 8/2 2/3 4/3	1,4173964 1,4036318 1,3999809 1,3949855 1,3987159 1,3987174 1,3987501 1,3987177 1,3987177	0,5 1 2 8 1 2 0,7 1,7 2,5 1

Реализация метода Симпсона и Гаусса (n=3) на микро-ЭВМ «Электроника Д3-28» дана в приложении 3 (программы ПП1/28 и ПП2/28). Время вычисления на этой микро-ЭВМ примерно в 100 раз меньше, чем на программируемых микро-калькуляторах (т.е. при высокой точности вычисления измеряется секундами, а не минутами). Практически сложность f(x) не ограничивается.

Сравнение результатов интегрирования точными методами Симпсона, Уэддля и Гаусса (табл. 2.6) показывает, что при высокой точности (до последнего знака) преимуществами перед методом Симпсона по времени счета обладают методы Гаусса и Уэддля При выборе метода пользователь должен оценить число шатов программы и регистров для записи фрагмента программы, по которому вычисляется f(x), а также типовые времена счета t_e при заданной точности.

Описанные программы применимы и для вычисления несобственных интегралов, у которых предел интегрирования $b = \infty$ или $f(x) \to \infty$ при $x \to x$ (∞) в интервале [a, b]. В первом случае интеграл разбивается на части:

$$\int_{a}^{\infty} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{\infty} f(x) \, dx, \qquad (2.13)$$

причем с подбирается так, чтобы

$$\left|\int\limits_{c}^{\infty}f\left(x\right)\,dx\right|<\frac{\varepsilon}{2}.$$

Следовательно, вычисляется только первый интеграл в (2.13).

Если $f(x) \to \infty$ в интервале [a, b], то надо предусмотреть, чтобы значение x (∞), при котором $f(x) \to \infty$, не совпало с дискретными значениями x, при которых вычисляются ординаты f(x) В этом случае метод Гаусса не удобен, так как определение дискретных значений x при нем сложно — они находятся внутри отрезков Δx . При других методах подбором N можно исключить попадание x (∞) на дискретные отсчеты x. Однако метод Гаусса применим, если f(x) имеет особенность при x = a или x = b, так как ординаты f(x) заведомо не попадают на границы интервала [a, b].

2.5. РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Расчет переходных процессов в нелинейных и импульсных устройствах чаще всего базируется на решении систем дифференциальных уравнений. Это решение аналогично решению одного дифференциального уравнения 1-го порядка, представленного в нормальном виде:

$$y' = dy/dx = f(x, y).$$
 (2.14)

Зависимость y(x) при известных начальных условиях y(0) и x(0) находится интегрированием (2.14) с шагом $h=\Delta x$:

$$y_{n+1} = y_n + \int_{x_n}^{x_n + \Delta x} f(x, y) dx.$$
 (2.15)

Различные численные методы решения (2.14) отличаются в основном способом вычисления входящего в (2.15) интеграла. В качестве неременной x при расчете переходных процессов выступает время t или нормированное время t/τ , где τ — начиболее характерная постоянная времени переходного процесса. Переменной η являются меняющийся ток или меняющееся напряжение.

Вычисляя интеграл в (2.15) простейшим методом прямоугольников, полу-

$$y_{n+1} = y_n + \Delta x f(x_n, y_n),$$

что соответствует простому методу Эйлера 1-го порядка.

Интегрирование модифицированным методом прямоугольников дает формулы модифицированного метода Эйлера 2-го порядка:

$$y_{n+\frac{1}{2}}^{*} = y_{n} + \Delta x f(x_{n}, y_{n})/2;$$

$$y_{n+1} = y_{n} + \Delta x f(x_{n} + \Delta x/2, y_{n}^{*}).$$

Еще более точная параболическая аппроксимация f(x, y) приводит к уравнениям метода Рунге — Кутта 4-го порядка:

$$y_{n+1} = y_n + (k_1 + 2k_2 + 2k_3 + k_4)/6$$

где

$$k_{1} = \Delta x f(x_{n}, y_{n});$$

$$k_{2} = \Delta x f(x_{n} + \Delta x/2, y_{n} - k_{1}/2);$$

$$k_{3} = \Delta x f(x_{n} + \Delta x/2, y_{n} + k_{2}/2);$$

$$k_{4} = \Delta x f(x_{n} + \Delta x, y_{n} - k_{3}).$$
(2.16)

Эти методы на микрокалькуляторе «Электроника Б3-21» реализуются программами 17—20 [2]. Чем выше порядок метода, тем больше шагов занимает его программная реализация и тем больше время вычислений на одном шаге интегрирования. Однако точность вычислений растет быстрее, чем время их проведения. Поэтому при заданной (не слишком низкой) точности результат можно получить быстрее методами более высокого порядка.

Программа 17. Простой метод Эйлера. Ввод: x(0) = P2. h = P3, y(0) = P4, $(x_n = P2, y_n = P4)^*$.

F3
$$\uparrow$$
 F2 + P2 $\Pi\Pi$ FX \uparrow F3 X \uparrow F4 + P4 C/Π $B\Pi$ P0 B/O

Программа 18. Модифицированный метод Эйлера. Ввод: $h/2 = \Gamma 2$, (x (0) - h/2) = P3, y (0) = P4, $(y_n = P5, x_n = P3)^*$.

$$\Pi\Pi$$
 1 $\Pi\Pi$ 1 + P4 C/ Π $B\Pi$ P0 P5 F2 † F3 + P3 † F2 \times † F4 + B/O

Программа 19. Метод Рунге-Кутта. Ввод: h/2 = P2, x(0) = P3, y(0) = PX, $(y_n = P7, x_n = P3, P8 - занят) *.$

Программа 20. Упрощенная реализация метода Рупге — Кутта. Вво $x \in \mathbb{N}$ (0) = P3, 3 y (0) = P4, y (0) = PX (y_n = P7, x_n = P3, P8 — занят)*

К сожалению, реализация широкораспространенного метода Рунге — Кутта 4-го порядка на микрокалькуляторе «Электроника БЗ-21» сложна. В программе 19 для записи y'(x,y) остается только 19 шагов и 3 регистра памяти, что недостаточно для решения большинства решаемых на практике нелинейных дифференциальных уравнений. В упрощенной программе 20 число шагов увеличено до 24, но каждый пуск падо производить нажатием двух клавиш: В/О и С/П.

В приведенной в приложении 2 программе ПП8/34 реализации метода Рунге — Кутта 4-го порядка на программируемом микрокалькуляторе «Электроника Б3-34» для записи $y'=f\left(x,y\right)$ остаются 52 шага и 9 свободных регистров, что позволяет решать достаточно сложные нелинейные дифференциальные уравнения.

Для контроля программ можно решить простейшее дифференциальное уравнение

$$y' = dy/dx = -y/\tau,$$

аналитическое решение которого заведомо известно и имеет вид $y(x) = \exp(x/\tau)$. Это позволяет в первом приближении оценить точность вычислений и минимальное время счета одного шага. Результаты контрольных вычислений даны в табл. 2.7 при шаге $\Delta x = 0.1$ и $\tau = 1$. Согласно табл. 2.7 метод Рунге — Кутта 4-го порядка и имеет высокую точность (верны 6 знаков после запятой). Однако следует учитывать, что на практике погрешность аппроксимации пелинейных вольтамперных характеристик электронных и полупроводниковых приборов редко бывает менее 2-5%. В этом случае вполне оправданно применение более простых методов, например Эйлера. Уменьшение погрешности при этом достигается уменьшением шага $h = \Delta x$.

В приложении 3 дана программная реализация метода Рунге—Кутта 4-го порядка на микро-ЭВМ «Электроника ДЗ-28» (программа ППЗ/28). Применение микро-ЭВМ этого типа обеспечивает примерно на два порядка большую скорость вычислений и практически снимает ограничения на сложность вписываемой в программу функции y' = f(x, y).

При большом шаге $h = \Delta x$ может наблюдаться неустойчивость решения. Для ее устранения надо выбрать шаг заметно меньше минимальной постоянной вре-

^{*} В незаполненную часть программ вписывается фрагмент вычисления $f(x_n, y_n)$ при значениях x_n и y_n , которые надо брать из указанных регистров.

Сравиение численных методов решения простейшего дифференциального уравнения

		Результат решения методом*						
f/t	exp(f/τ)	Эйлера простым	Эйлера модифици- рованным	Рунге—Кутта 4-го порядка				
0,5 1 1,5 2	0,6065306 0,3678794 0,2231301 0,1353352	0,59049 0,3486784 0,2058911 0,1215766	0,60707576 0,36854098 0,2237323 0,13582248	0,6065306 0,3678790 0,223130 0,135335				

• Время вычисления на одном шаге этими методами составляет соответственно 4. 5 и 18 с.

мени цепи или использовать неявные методы (см. § 7.2). Для оценки точности на практике выполняют решение при уменьшенном вдвое h и считают, что точность характеризуется верными p цифрами, совпадающими в полученных двух результатах — при шаге h и h/2.

2.6. ОПТИМИЗАЦИЯ

Оптимизация заключается в установлении значений проектных параметров x, y, z и т. д., при которых целевая функция M(x, y, z, ...) имеет экстремум. Многие задачи сводятся к одномерной оптимизации, т. е. нахождению экстремума M(x) — целевой функции одной переменной. Отметим, что если M(x) при $x = x_{\rm M}$ имеет максимум, то функция M(x) будет иметь минимум (и наоборот). Алгоритмы оптимизации детально описаны в [15].

Одномерный попск экстремума M(x) можно осуществлять методом поразрядного приближения, задавая ряд значений x, начиная с $x=x_0$ с шагом Δx_N (вначале $\Delta x_N=\Delta x_0$) и оценивая знак приращения $\Delta M(x)$. Следует отметить. что при однократном прохождении экстремума знак $\Delta M(x)$ может не изменяться. Поэтому следует предусмотреть возврат на два шага после смены знака $\Delta M(x)$, после чего изменить Δx_N на Δx_{N+1} . Ниже дана реализация одномерной оптимивации на микрокалькуляторах.

Программа 21. Одномерная оптимизация на микрокалькуляторе «Электроника БЗ-21» [2]. Ввод: $x_0 = P2$, $\Delta x_0 = P3$ (текущие значения x = BP2).

Программа 22. Одномерная оптимизация на микрокалькуляторе «Электроник» БЗ-34» [21]. Ввод $x_0 = PA$, $\Delta x_0 = PB$ $\epsilon/4 = P0$ (текущее значение x - B PA, M_{Marc} заносится B PC).

Первая из этих программ обеспечивает поиск минимума, а вторая — максимума. Функция M(x) вписывается в незаполненную часть программ. Например, для определения $x_{\rm M}$ функции $M(x)=xe^{-2x}$, имеющей максимум, воспользуемся программой 22 и впишем в нее фрагмент вычисления M(x): ИПА 2 /-/ \times Fex ИПА \times . При $x_0=0$, $\Delta x_0=0$,2 и e/4=2,5·10⁻⁴ получим $x_{\rm M}=0$.5 и $M_{\rm Makc}=0$,18395972 при времени счета около 100 с. Отметим, что в первой программе вычисления останавливаются по равенству є машлиному нулю.

2.7. ИНТЕРПОЛЯЦИЯ И ЭКСТРАПОЛЯЦИЯ

Отыскание значений нелинейной функции y(x), заданной только n ординатами в интервале аргумента $x[x_0,x_{n-1}]$, называется интерполяцией, а за пределами этого интервала — экстраполяцией этой функции. Простейшие виды интерполяции и экстраполяции реализуются на микрокалькуляторе «Электроника БЗ-21».

Программа 23. Линейная интерполяция и экстраполяция по формуле

$$y(x) = y_0 + (x - x_0) (y_1 - y_0)/h,$$

где h — шаг, на который отстоят друг от друга абсциссы x_0 и $x_1=x_0+h$. Ввод: h= P8, $x_0,\ y_0,\ y_1$ и x в регистр X.

При h=0.01, $x_0=2.47$, $y_0=0.493244$, $y_1=0.493431$ и x=2.475 получаем y(x)=0.4933375 (интерполяция), затем, вводя $x=2.465=\mathrm{PX}$ и нажимая клавншу С/П, получаем y(x)=0.4931505 (экстраполяция).

Программа 24. Квадратичная интерполяция и экстраполяция по формуле Лагранжа при равноотстоящих друг от друга абсциссах по формуле

$$y(x_0 + ph) = p(p-1)y_{-1}/2 + (1-p^2)y_0 + p(p+1)y_1/2$$
,

гле $p=(x-x_0)/h$; $y_{-1}=y$ (x_0-h) ; $y_0=y$ (x_0) ; $y_1=y$ (x+h). Ввод: h= = P8, y_{-1} , y_0,y_1 . x_0 и x в регистр X.

При h = 0.1, $y_{-1} = 0.934$, $y_0 = 0.9525$, $y_1 = 0.9661$, $x_0 = 1.4$ и x = 1.43 получаем y(x) = 0.9570945 (интерполяция), а при x = 1.55 y(x) = 0.9710625 (экстраполяция).

Большее число шагов программы микрокалькулятора «Электроника БЗ-34» позволяет реализовать интерполяцию и экстраполяцию с помощью интерполяциюнного полинома Лагранжа с произвольным расположением до пяти абсцисс и с одновременным вычислением коэффициентов $B_0 - B_4$ (по схеме, описанной в [16, с. 690]) этого полинома, представленного в виде

$$y(x) = \left[\left[\left| B_4(x - x_3) + B_3 \right| (x - x_2) + B_2 \right] (x - x_1) + B_1 \right] (x - x_0) + B_0.$$

Программа 25. Интерполяция и экстраполяция полиномом Лагранжа при произвольном расположении пяти абсцисс. Ввод: $x_0...x_1 = \text{P0}...\text{P4}, \ y_0 = \text{P9}, \ y_1...y_4 = \text{PA}...\text{PД}. \ \text{Результат:} \ 0 = \text{PX}, \ B_0 = \text{P9}, \ B_1...B_4 = \text{PA}...\text{РД}. \ \text{и} \ \text{(после ввода} \ x = \text{PX}) \ \text{и} \ (x) = \text{PX}.$

Пусть y (x) задана значениями $x_0=2,2,\ y_0=0,4860966,\ x_1=2,3,\ y_1=0,4892759,\ x_2=2,4,\ y_2=0,4918025,\ x_3=2,5,\ y_3=0,4937903,\ x_4=2,4$ и $y_4=0,4953388$. Вводим эти данные и, нажимая клавишу С/П, ожидаем появления на инликаторе цифры 0. При этом вычисляются $B_0\dots B_1$ ($B_0=0,4860966,\ B_1=0,031793,\ B_2=-0,032635,\ B_3=0,0189833$ и $B_1=-0,0599965$). Далее,

набирая, например, x = 2.45 = PX и нажимая клавишу С/П, получаем y(x) =

= 0,49285719 при точном значении 0,4928572.

Программа 25 может использоваться и для обратной интерполяции и экстраполяции, т. е. нахождения значения x, соответствующего заданному значению y. Для этого значения $x_0...x_4$ вводятся в регистры P9, РА...РД, а значения $y_0....y_4$ — в регистры Р0...Р4. Обратная интерполяция является одним из методов решения нелинейного уравнения (2.3), если положить y = F(x) = 0 и вычислить x = x.

глава з

МОДЕЛИ АКТИВНЫХ ПРИБОРОВ ДЛЯ РАСЧЕТА НЕЛИНЕЙНЫХ И ИМПУЛЬСНЫХ УСТРОЙСТВ

3.1. ОСНОВНЫЕ ТРЕБОВАНИЯ К МОДЕЛЯМ АКТИВНЫХ ПРИБОРОВ ПРИ РАСЧЕТАХ НА МИКРО-ЭВМ

Модели, используемые при расчетах на микрокалькуляторах, должны удовлетворять ряду требований: быть достаточно простыми и точными, иметь небольшое число доступных для измерения или расчета исходных параметров, описываться уравнениями, содержащими функции, доступные для вычислений по микропрограммам, и др. Обычные модели не всегда удовлетворяют этим требованиям. Например, универсальные модели биполярных транзисторов имеют более 25—30 исходных параметров [17—20], что не позволяет разместить их в регистрах памяти микрокалькуляторов. Поэтому целесообразно использовать упрощенные модели, например описывающие приборы не во всех режимах, а только в необходимых для расчета заданных схем. Поскольку многие второстепенные параметры моделей часто не задаются в ТУ и достоверно не известны, то исключение их из упрощенных моделей не делает последние менее точными, чем универсальные и гораздо более сложные модели.

При расчетах на больших ЭВМ стремятся автоматизировать процесс составления уравнений, описывающих работу электронных устройств. При расчетах на микрокалькуляторах преобладает иной подход: уравнения составляются вручную и нередко требуют упрощающих преобразований, например нормиро-

вания переменных и уменьшения их числа.

Часто расчет и моделирование радиоэлектронных устройств можно свести к расчету их параметров по известным, подчас сложным, аналитическим выражениям. Такие задачи нецелесообразно решать на больших ЭВМ из-за отсутствия стандартных программ, сложности программирования, большой стоимости машинного времени и зачастую сложной и долгой процедуры подготовки к вычислениям на большой ЭВМ. В этом случае весьма удобны микрокалькуляторы.

3.2. МОДЕЛЬ ПОЛУПРОВОДНИКОВОГО ДИОДА

Полупроводниковый диод можно представить в виде идеального диола, зашунтированного барьерной C_0 и диффузионной $C_{\rm L}$ емкостями и шунтирующим сопротивлением $R_{\rm III}$ (рис. 3.1). Часто считают $R_{\rm III} = \infty$. Последовательное сопротивление выводов и областей p и n перехода диода учитывается введением последовательного сопротивления $R_{\rm III}$.

На основании анализа физических закономерностей работы идеального диода вольт-амперная характеристика (ВАХ) может быть представлена уравнениями

[21]:

$$I = I_0 \left(e^{U/m\phi_T} - 1 \right);$$
 (3.1)

$$U = m\varphi_T \ln \left(\frac{I}{I_0} + 1 \right), \tag{3.2}$$

где I_0 — обратный ток диода; $\phi_T = kT/q$ — тепловой потенциал (при комнатной температуре $\phi_T = 0.25$ В); m = 1...2 — коэффициент, учитывающий влиявие рекомбинации носителей в p-n-переходе; k — постоянная Больцмана; T — абсолютная температура; q — заряд электрона. Значение $I_0 \approx 10^{-4} \dots 10^{-7}$ А для германиевых диодов и на несколько порядков меньше

для кремниевых (при $T=20^{\circ}$ C).

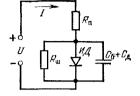


Рис. 3 1. Электрическая модель диода

Барьерная емкость диода

$$C_0 = C_0 \sqrt[n]{\Delta \varphi_0 / (\Delta \varphi_0 - U)},$$

где $\Delta \phi_0$ — барьерная разность потенциалов (доли вольт); C_0 — барьерная емкость при напряжении на диоде, равном 0. Учет C_0 существен при обратном иапряжении на диоде U < 0, так как кри U > 0 преобладает диффузионная емкость. Показатель n=2 для резких и n=3 для плавных переходов.

Диффузионная емкость диода обусловлена накоплением в его структуре зарядов неосновных носителей

при их инжекции в прямом включении диода. Заряд неосновных носителей Q_6 , накопленный в базе диода, можно определить, решая дифференциальное уравнение заряда

$$dQ_{0}/dt + Q_{0}/\tau_{H} = l_{\pi}(t),$$

которое отражает то обстоятельство, что скорость изменения заряда dQ_6/dt равна разности между скоростью их поступления (т. е. тока $i_{\rm H}$) и скоростью рекомбинации их (член $Q_6/\tau_{\rm H}$, где $\tau_{\rm H}$ — эффективное время жизни носителей в базе. При $i_{\rm H}(t)=I={\rm const}\ dQ_6/dt=0$ и $Q_6=\tau_{\rm H}I$. Значение $\tau_{\rm H}$ обычно составляет от долей до десятков наносекунд.

Диффузионная емкость диода определяется как

$$C_{\rm II} = dQ_{\rm f}/dU = /\tau_{\rm H}/(m\varphi_{\rm T}) = \tau_{\rm H}/r_{\rm II \cdot II} + \tau_{\rm H}$$

где $r_{\rm n,\,\pi h \Phi}$ находим из (3.2), дифференцируя последнее:

$$r_{\text{m.gu}} = \frac{dU}{dI} = \frac{m\varphi_T}{I + I_0} \approx \frac{m\varphi_T}{I}$$

— и полагая, что при прямом включении $I\gg I_0$. Обычно $C_{\rm L}\gg C_0$ уже при токах порядка единиц миллиампер. Исключением являются диоды Шотки, имеющие $C_{\rm L}\approx 0$.

3.3. МОДЕЛЬ ТУПНЕЛЬНОГО ДИОДА

Туннельные диоды, в отличие от обычных, выполняются из сильполегированного полупроводники (гермации или арсенида галлия). При такой степени легирования в них наблюдается тунцелирование носителей через p-n-переход при малых U (при узком переходе). С ростом U p-n-переход расширяется и тунцелирование носителей уменьшается. Однако при этом начинает сказываться рост тока через p-n-переход за счет инжекции неосновных носителей.

Вольт амперная характеристика туннельного диода (рис. 3.2, а) может быть представлена как зависимость тупнельной и диффузионной составляющих тока от напряжения U. Такому представлению хорошо отвечает аппроксимация

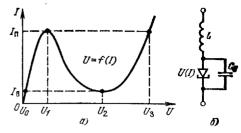
$$I = AUe^{-\alpha U} + D(e^{\beta U} - 1), \qquad (3.3)$$

где первый член описывает туннельную, а второй диффузионную составляющие тока. При этом величины α , β , A и D легко определяются через параметры ВАХ и параметры идеального диода (см. выше):

$$\alpha = 1/U_1; \ \beta = 1/m\varphi_T;$$
 $A = e I_T/U_1; \ D = I_0.$

Достоинством данной аппроксимации является ее непрерывность во всем диапазоне изменения *U*. Существует ряд других аппроксимаций [22, 23].

Мнерционность туннельного фиода учитывается его общей емкостью C_0 . У современных туннельных диодов нелинейная барьерная емкость p-n-перехода C_0 составляет малую часть емкости C_0 , обусловленной в основном элементами конструкции. Это позволяет считать C_0 = const. Обоб-



Puc. 3.2. Вольт-амперная характеристика (а) ■ электрическая модель (б) туннельного диода

щенным параметром, характериз ующим инерционность туннельного диода, является отношение пикового тока I_Π к емкости C_0 (чем больше I_Π/C_0 , тем быстрем переключается диод). В ряде случаев необходимо учитывать еще и индуктивность выводов (рис. 3.2,6). У арсенид-галлиевых туннельных диодов типовые параметры следующие: $U_1\approx 0.1$ В; $I_\Pi=1...100$ мА; $I_0\leqslant 10^{-8}$ А и $C_0=5...100$ пФ.

3.4. МОДЕЛИ БИПОЛЯРНОГО ТРАНЗИСТОРА

Одной из наиболее распространенных статических моделей биполярного транзистора является хорошо известная модель Эберса — Молла [17 21]. Она дает связь напряжений и токов эмиттерного и коллекторного переходов:

$$I_{\Im} = \frac{I_{\Im 0}}{1 - \alpha_{N} \alpha_{I}} \left(e^{U_{\Im}/\phi_{T}} - 1 \right) - \frac{\alpha_{I} I_{K0}}{1 - \alpha_{N} \alpha_{I}} \left(e^{U_{K}/\phi_{T}} - 1 \right);$$

$$I_{K} = \frac{\alpha_{N} I_{K0}}{1 - \alpha_{N} \alpha_{I}} \left(e^{U_{\Im}/\phi_{T}} - 1 \right) - \frac{I_{K0}}{1 - \alpha_{N} \alpha_{I}} \left(e^{U_{K}/\phi_{T}} - 1 \right).$$
(3.4)

В таком виде модель сложна для расчета на микрокалькуляторах, поскольку в нее входят семь исходных параметров: обратные токи коллекторного I_{K0} и эмиттерного I_{90} переходов, прямой α_N в инверсный α_I коэффициенты передачи тока эмиттера, температурный потенциал ϕ_I и напряжения U_K и U_9 . Хотя расчет ВАХ по (3.4) на микрокалькуляторах вполне возможен, он занимает всю программую память. Однако существует ряд возможностей существенного упрощения модели Эберса-Молла.

Прежде всего отметим, что у современных диффузионных и планарных транзисторов $\alpha_I \ll \alpha_N \approx 1$. Это позволяет записать уравнения Эберса — Молла в более компактном виде:

$$I_{9} = I_{90} \left(e^{U_{9}/\phi_{T}} - 1 \right) - \alpha_{I} I_{K0} \left(e^{U_{K}/\phi_{T}} - 1 \right);$$

$$I_{K} = \alpha_{N} I_{90} \left(e^{U_{9}/\phi_{T}} - 1 \right) - I_{K0} \left(e^{U_{K}/\phi_{T}} - 1 \right).$$
(3.5)

В схеме с общей базой заданной величиной удобно считать ток эмиттера, а не напряжение на нем. Тогда, выражая член ($e^{U_{9}/\Phi T}$ —1) в верхнем уравнении (3.5) через другие параметры и подставляя этот член в нижиее уравнение, получаем простое выражение для семейства выходных характеристик:

$$I_{K} = \alpha_{N} I_{\Im} - I_{K0} \left(e^{U_{K}/\phi_{T}} - 1 \right).$$
 (3.6)

Аналогичным образом, разрешая верхнее уравнение (3.5) относительно U_{\Im} , получаем выражение для семейства входных характеристик

$$U_{\mathfrak{I}} = \varphi_T \ln \left[\frac{I_{\mathfrak{I}}}{I_{\mathfrak{I} \mathfrak{I} \mathfrak{I}}} + 1 + \alpha_N \left(e^{U_{\mathbf{K}}/\varphi_T} - 1 \right) \right].$$

В активном режиме работы ($U_{\rm K}<0$, $U_{\rm S}>0$ и | $U_{\rm K}>3\phi_T$) эти выражения еще более упрощаются и принимают вид:

$$I_{K} = \alpha_{N} I_{3} + I_{K0};$$
 (3.7)

$$U_{\mathfrak{A}} = \varphi_T \ln (I_{\mathfrak{A}}/I_{\mathfrak{B}0}),$$
 (3.8)

Конечное усредненное дифференциальное сопротивление коллектора $\overline{r_{\rm K}}$ можно учесть, добавив в (3.7) член $U_{\rm K}/\overline{r_{\rm K}}$, а конечное последовательное сопротивление базы $r_{\rm G}$ учитывается добавлением в (3.8) члена $r_{\rm G} l_{\rm G}$ (1 — α_N). В последнем случае учтено, что через $r_{\rm G}$ течет ток $l_{\rm G}=(l_{\rm G}-l_{\rm K}) \approx l_{\rm G}(1-\alpha_N)$.

В схеме с общим эмпттером удобно выразить $I_{\rm K}$ и $U_{\rm B} = U_{\rm B}$ через ток базы:

$$I_{K} = \beta_{N} I_{B} + (\beta_{N} + 1) I_{K0};$$
 (3.9)

$$U_{\rm B} = \psi_T \ln (l_{\rm B} (\beta_N + 1)/l_{\odot 0}),$$
 (3.16)

где $\beta_N = \alpha_N / (1 - \alpha_N)$.

Дифференциальное сопротивление коллектора в этом случае $\overline{r_{\kappa}^*} = \overline{r_{\kappa}}/\beta_{N}$. Его можно учесть, добавив в (3.9) член $U_{K9}/\overline{r_{\kappa}^*}$; r_{B} учитываем, добавляя в (3.10) $r_{0}I_{E}$.

Из уравнений Эберса — Молла можно найти напряжение $U_{\rm K9H}$ биполярного транзистора в области насыщения, т. е. при прямо-смещенных эмиттерном и коллекторном переходах. Ограничимся приведением выражения, справедливого при $\beta_N I_{\rm B} > (3...4)\ I_{\rm K} \gg I_{\rm K0}$:

$$U_{\mathrm{KS}_{\mathrm{B}}} \approx \varphi_T \ln \frac{\alpha_I}{1 + I_{\mathrm{K}}/(1 + \beta_N) I_{\mathrm{B}}}$$
 (3.11)

Рекомбинацию посителей в эмиттерном переходе, как и в случае диода, можно учесть, заменив во всех приведенных формулах ϕ_T на m ϕ_T (считаем, что m=1 у германиевых и $m \approx 1...2$ у кремниевых приборов). Типовые параметры модели можно оценить по справочным данным на транзисторы.

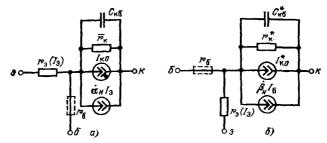
Динамические свойства биполярного трапзистора обусловлены рядом механизмов его инерционности. Основными из них являются конечное время пролета неосновными носителями активной области прибора и влиянием емкости коллекторного перехода C_{KB} [21]. Эти механизмы учтены в электрической модели — эквивалентной схеме транзистора (рис. 3.3, a). Емкость

$$C_{\rm R6} = C_{\rm R50} \sqrt[n]{\Delta \varphi_0 / (\Delta \varphi_0 - U_{\rm KB})}.$$

Конечное время пролета ведет к частотной зависимости коэффициента передачи тока базы

$$\alpha_N(i\omega) = \alpha_N e^{-i\omega t_{3\alpha}}/(1+i\omega/\omega_\alpha)$$

где $t_{3\alpha}$ — время задержки переходной характеристики $\alpha_N(t)$; $\omega_\alpha=1/\tau_\alpha$ — предельная частота коэффициента передачи тока базы; τ_α — постоянная времени переходной характеристики $\alpha_N(t)$. В ряде случаев допустимо считать $t_{3\alpha}=0$.



Рас. 8.3. Электрическая модель биполярного транзистора (а) и ее модификация пля схемы с общим эмиттером (б)

В схеме с общим эмиттером удобно использовать электрическую модель (рис. 3.3, 6) с параметрами:

$$r_{\rm K}^* = r_{\rm R}/(1+\beta_N);$$

$$C_{\rm KG}^* = C_{\rm KG}(1+\beta_N);$$

$$\beta_N(i\omega) \approx \beta_N/(1+i\omega/\omega_\beta);$$

$$\omega_\beta = \omega_\alpha/(1+\beta_N) = 1/\tau_\beta.$$

Для расчета импульсных устройств удобной и физически наглядной оказыва ется математическая зарядная модель биполярного транзистора:

$$\frac{dQ_{\delta}}{dt} + \frac{Q_{\delta}}{\tau_{\partial KB}} = \frac{\tau_{\beta}}{\tau_{\beta \partial KB}} i_{B}(t), \qquad (3.12)$$

$$Q_{\delta} = \tau_{\alpha} i_{K}/\alpha_{N},$$

где в активном режиме

$$\tau_{\beta_{3RB}} = \tau_{\beta} + \overline{C}_{KG}^* R_{K}$$

 $(R_{\rm K}-{\rm conpotub}$ ление коллекторной нагрузки, активное), а в режиме насыщения $au_{\rm BSKB}= au_{\rm H}$ ($au_{\rm H}-{\rm время}$ жизни неосновных носителей в базе в режиме насыщения, часто считают $au_{\rm H}= au_{\rm B}$). Усредненная емкость $C_{\rm KG}$ различна при включении и выключении транзистора [21]. В ключевом режиме считают $C_{\rm KG}=1.6$ $C_{\rm KG}$ ($E_{\rm K}$) при отпирании и $C_{\rm KG}=2.1$ $C_{\rm KG}$ ($E_{\rm K}$) при запирании транзистора, где $C_{\rm KG}$ ($E_{\rm K}$)—емкость $C_{\rm KG}$ при $U_{\rm KG}=E_{\rm K}$

3.5. МОДЕЛЬ МАЛОМОЩНОГО ПОЛЕВОГО ТРАНЗИСТОРА

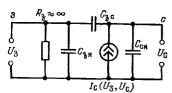
Из анализа физических процессов в маломощных полевых транзисторах при условии постоянства подвижности носителей в канале получены уравнения для выходных вольг-амперных характеристик МДП-гранзисторов [21]:

$$I_{C} = b \left[(U_{3} - U_{0}) U_{G} - \frac{i}{2} (1 + \eta) U_{C}^{2} \right]$$
 (3.13)

при $U_{\rm C} \leqslant (U_{\rm B} - U_{\rm O})/(1 + \eta);$

$$I_{\rm C} = \frac{1}{2} \frac{b}{1+11} (U_3 - U_\theta)^2 \tag{3.14}$$

при $U_{\rm G} > (U_3 - U_0)'(1 + \eta),$



Puc. 3.4. Электрическая модель полевого транзистора

где $I_{\rm C}$ — ток стока; $U_{\rm C}$ — напряжение на стоке; $U_{\rm 0}$ — напряжение отсечки; $U_{\rm 3}$ — напряжение на затворе; b — удельная крутизна и η — коэффициент влияния подложки. Формулы (3.13), (3.14) применимы и к полевым транзисторам с управляющим переходом.

Электрическая модель маломощного полевого транзистора (рис. 3.4) может непользоваться для расчета как статических, так и динамических режимов электронных цепей. Инерционность полевого транзистора обусловлена его емкостями:

«затвор — исток» $C_{\rm 30}$, «сток — исток» $C_{\rm Cu}$ и «затвор — сток» $C_{\rm 30}$. В ряде случаев уравнения для нелинейной зависимости $I_{\rm C}$ ($U_{\rm C}$, $U_{\rm 3}$) (3.13) и (3.14) неудобны для расчетов, так как описывают ВАХ раздельно для указанных значений $U_{\rm C}$. Единое для всех значений $U_{\rm C}$ выражение дает аппроксимация ВАХ вида

$$I_{\rm C} = \frac{1}{2} \frac{b (U_3 - U_0)^2}{1 + \eta} \left[1 - e^{-kU_{\rm C}/(U_3 - U_0)} \right], \tag{3.15}$$

где $k=\mathrm{const}$ — коэффициент, подбираемый по наилучшему совпадению результатов расчета и эксперимента. Эта аппроксимация удобна для расчета импульсных устройств. В ряде случаев приведенные выражения можно упростить, полагая $\eta=0$. В частности, значение $\eta=0$ следует принимать для полевых транзисторов с управляющим переходом и МДП-транзисторов с подложкой, соединенной с истоком.

3.6. МОДЕЛЬ МОШНОГО ПОЛЕВОГО ТРАНЗИСТОРА

В настоящее время появилась серия мощных кремниевых ВЧ и СВЧ МДПтранвисторов с большими мощностями (от 3 до 75 Вт) и рабочими токами (от 0,2 до 7,5 А). К ним относятся отечественные приборы КП901, КП902, КП904, КП905, КП907, КП908 [24, 25].

Электрическая модель мощных МДП-транзисторов в первом приближении аналогична модели маломощных приборов (см. рис. 3.4). Однако выражения для выходных ВАХ маломощных полевых транзисторов неприменимы для мощных приборов. Прежде всего необходимо отметить, что из-за уменьшения подвижности носителей в канале мощных приборов при больших U_3 зависимость $I_{\rm C}$ от (U_3-U_0) в пологой области ВАХ отлична от квадратичной (3.13) и до напряжений $U_3=10...15$ В близка к линейной, т. е.

$$I_{\rm C} = S (U_3 - U_0) = I_{\rm CR} + SU_3$$

где $I_{\rm CH}=SU_0$ — начальный ток стока (при $U_3=0$); $U_0=\pm 2$ В — напряжение отсечки; S — крутизна при больших $U_{\rm C}$. Эта формула верна только при $(U_3-U_0)\geqslant 0$, при $(U_3-U_0)<0$ $I_{\rm C}=0$, так как транзистор запирается.

Используя такую передаточную характеристику и учитывая, что зависимость $I_{\rm C}$ от напряжения на стоке $U_{\rm C}$ близка к экспоненциальной, можно получить следующее выражение для полного семейства ВАХ мощного МДП-траизистора [25]:

$$I_{\rm C} = S(U_3 - U_0) [1 - \exp(-pU_{\rm C}/(U_3 - U_0))].$$
 (3.16)

Аппроксимация (3.16) справедлива в первом приближении. При $U_3 > 10...15$ в передаточная характеристика отклоняется от линейной и с ростом U_3 постепенно ограничивается ток стока. Для учета этого явления, обусловленного наличием последовательного сопротивления полностью открытого канала, можно

использовать более точную параболнческую аппроксимацию передаточной характеристики:

$$I_{G} = I_{C_{\pi}} + SU_{3} + aU_{3}^{2} = S(U_{3} - U_{0} + bU_{3}^{2}),$$

где a < 0 и b = a/S < 0. Параметры I_{CH} , S и a могут быть определены по рязу экспериментальных значений I_{C} и U_{3} с использованием критерия миниму ча среднеквадратичной погрешности аппроксимации (методика параболической аспроксимации подробно описана в § 9.5).

С учетом параболической аппроксимации передаточной характеристики пол-

ное семейство ВАХ описывается формулой

$$I_{G} = S\left(U_{3} - U_{0} + bU_{3}^{2}\right) \left[1 - \exp\left(-\rho U_{C} / \left(U_{3} - U_{0} + bU_{3}^{2}\right)\right)\right]. \tag{3.17}$$

Коэффициент p в формулах (3.16), (3.17) может определяться по значению тока стока $I_{\rm C}=I_{\rm C0}$ для $U_3=U_{\rm C}=U_{\rm C0}=$ const (значения $I_{\rm C0}$ и $U_{\rm C0}$ обычно являются наспортными параметрами). С учетом этих условий из (3.17) получаем

$$\rho = \frac{U_{\text{C0}} - U_0 + bU_{\text{C0}}^2}{U_{\text{C0}}} \ln \left[1 - \frac{I_{\text{C0}}}{S(U_{\text{C0}} - U_0 + bU_{\text{C0}}^2)} \right]^{-1}$$
 (3.18)

При упомянутой методике определения параметров аппроксимации (3.17) погрешность вычисления обычно не превышает 5-20%, что вполне приемлемо для инженерных расчетов.

37 МОЛЕЛИ ЛАВИННОГО ТРАНЗИСТОРА

Лавинные транзисторы основаны на использовании явления лавинного умножения носителей в коллекторном переходе биполярного транзистора [26]. Зависимость коэффициента умножения M от напряжения на коллекторном переходе описывается полуэмпирической формулой Миллера

$$M = [1 - (U_{KB}/U_M)^{n*}]^{-1}, (3.19)$$

где U_M — напряжение лавинного пробоя коллекторного перехода; n^* — покаватель, зависящий от типа транзистора ($n^*=2...6$).

Статические ВАХ лавинных транзисторов описываются уравнениями Эберса — Молла, если в них залисать MI_{K0} вместо I_{K0} и $\alpha_N M$ вместо α_N . Например, учтя, что $\alpha_N M > 1$, следует записать

$$I_{K} = (-\alpha_{N} M I_{5} - M I_{K0})/(\alpha_{N} M - 1).$$
 (3.20)

Обычно лавинные транзисторы используются при обратной полярности ток обазы ($I_{\rm B}<0$) и имеют в схеме с общим эмиттером S образные выходные ВАХ При $I_{\rm K}<|I_{\rm B}|$ эмиттерный переход закрыг, $\alpha_N=0$ и $I_{\rm K}=MI_{\rm K0}$ С росгом $U_{\rm K9}\approx U_{\rm K6}\to U_{\rm M}$ ток $I_{\rm K}$ растет, и при $I_{\rm K}\geqslant|I_{\rm B}|$ эмиттерный переход отпирается. При этом $I_{\rm K}$ определяется выражением (3.20). Нетрудно заметить, чго рост $I_{\rm K}$ должен сопровождаться уменьшением напряжения $U_{\rm K6}$. Так, при $I_{\rm K}\to\infty$ $\alpha_NM\to 1$, что возможно, если

$$U_{K \ni} \approx U_{K B} \rightarrow U_{\beta} = U_M \sqrt[N]{1 - \alpha_N},$$
 (3.21)

где U_{B} — напряжение пробоя транзистора при обрыве базы.

По своим динамическим свойствам лавинные транзисторы делятся на ряд типов. Из них основными являются лавинно-инжекционные и траизисторы с областью объемного заряда, ограниченной смыканием.

Значение $_{\gamma}$ лавинно-инжекционных транзисторов близко к обычному значению (в делегвительности оно может быть существенно меньше, так как при больших $U_{K,n}$ лирина базы транзистора уменьшается). Динамическая зарядная

модель таких транзисторов описывается выражением (3.12), если $lpha_N$ заменить на $\alpha_N M$.

В лавинных транзисторах с ограниченной смыканием областью объемного заряда в рабочем диапазоне токов коллекторный переход смыкается с эмиттерным [27, 28]. При этом время пролета неосновными носителями активной области прибора резко уменьшается, достигая значения

$$\tau_{T_{MUH}} \approx (W_6 + l_{n0})/v_{\pi p}$$
,

где W_6 в I_{n0} — конструктивная ширина базы и высокоомного коллекторного слоя; $v_{\rm дp} \approx 10^7$ см/с — скорость дрейфа неосновных носителей в сильном поле. Значения $\tau_{T_{\rm MHH}}$ часто составляют доли наносекунды.

Достаточно точную физико-математическую модель биполярного транзистора, учитывающую смыкание переходов в лавинном режиме [28], из-за сложности трудно использовать при расчетах на микрокалькуляторах. Для таких расчетов удобна более формальная модель динамического пробоя [26], в основе которой лежит описание быстрого спада напряжения на коллекторе с уровня $U_0 \eqsim U_M$ до уровня $U_{
m R}$ с помощью приближенного выражения

$$U_{\text{K9}}(t) \approx U_M V^{n} \frac{1 - \alpha_N (1 - e^{-t/\tau_T}) + M_0^{-1}}{1 - \alpha_N (1 - e^{-t/\tau_T}) + M_0^{-1}}$$

или при большом начальном умножении $M_0\gg 1$

$$U_{K3}(t) \approx U_M V_{1-\alpha_N (1-e^{-t/\tau_T})}^{n^*}$$
 (3.22)

Согласно (3.22) U_{K3} (t) не может падать ниже уровня U_{8} . В действительности такой спад наблюдается в релаксационных схемах на лавинпом транзисторе (ок легко объясняется зарядной моделью лавинно-инжекционного транзистора). К ${f c}$ паду $U_{{f K}, f o}$ (t) приводит также наличие последовательной эквивалентной индуктивности коллекторной цепи. Существование индуктивных свойств у лавинных транзисторов вытекает и из общих свойств всех приборов с S-образными BAX [29].

ГЛАВА 4

РАСЧЕТ СТАТИЧЕСКОГО РЕЖИМА НЕЛИНЕЙНЫХ ЭЛЕКТРОННЫХ ЦЕПЕЙ

4.1. РАСЧЕТ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК полупроводниковых приборов

Ряд задач синтеза нелинейных электронных цепей просто решается на основе расчета BAX полупроводниковых приборов. Так, для определения E и R в простейшей (рис. 4.1, а) и в более сложных ценях достаточно задаться положением рабочей точки (рис. 4.1, 6) $U_{\rm p}$, $I_{\rm p}$. Тогда $E=(U_{\rm p}+RI_{\rm p})$ при заданном R нли $R=(E-U_{\rm p})/I_{\rm p}$ при заданном E. Такой расчет можно объединить с расчетом температурной нестабильности рабочей точки.

По программе БП1 (см. приложение 1) реализуется расчет ВАХ диода по формуле (3.2), причем I_0 и ϕ_T при заданной температуре T рассчитывается по

формулам:

$$I_0(T) = I_0(20^{\circ}\text{C}) \cdot 2^{(T - 20^{\circ}\text{C})/T}$$
y; (4 1)

$$\varphi_T(T) = \varphi_T(20^{\circ}\text{C}) \left(1 - \frac{T - 20^{\circ}\text{C}}{293^{\circ}\text{C}}\right).$$
 (4.2)

При расчете BAX S, N и Λ -образной формы (рис. 4 2) необходимо считаться с их неоднозначностью при питании от источника напряжения или тока. Так, I(U) по программе БП2 будет однозначной, если задавать напряжение на туннельном диоде й определять ток.

В некоторых случаях ВАХ рассчитывается по нескольким формулам с помощью разветвляющихся программ. Так, в программе БПЗ для расчета выходных ВАХ маломощных

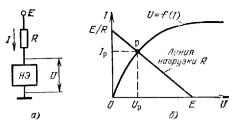


Рис. 4.1. Элементарная нелинейная цепь (а) и положение ее нагрузочной прямой (б)

полевых транзисторов с помощью операций с адресами 03-19 рассчитывается разница между напряжением $U_{\rm C}$ и $(U_3-U_0)/(1+\eta)$. Если она отрицательна, расчет осуществляется по формуле (3.13). При положительной разнице выполняется условие условного перехода $x\geqslant 0$ (адрес операции 20) и программа переводится автоматически на вычисления по формуле (3.14).

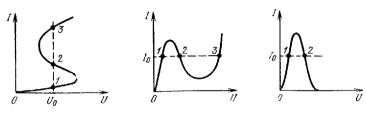


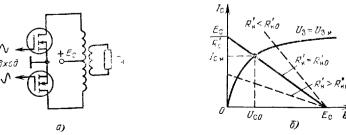
Рис. 4.2. S-, N- и 1-образные ВАХ

Программы БП4 и БП5 служат для расчета семейства выходных ВАХ мощных МДП-транчисторов по формуле (3.17) и для определения параметра р по формуле (3.18).

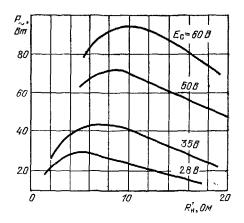
Программа БП6 предназначена для расчета выходных S-образных ВАХ лавинных транзисторов. Для обеспечения однозначности расчетов уравнение (3.20) представлено в виде

$$U_{K9} = U_M \sqrt[n^*]{1 - [\alpha_9 (I_K - |I_B|) + I_{K0}]/I_K};$$
(4.3)

В программе сравниваются I_K с $|I_B|$ —операции с адресами 00—03. Если (I_K — $-|I_B|$) < 0, происходит безусловный переход к операции с адресом 14, т. е. расчет осуществляется по (4.3) с $\alpha_{\mathfrak{I}}=0$ (транзистор закрыт). В противном случае выполняется переход на команду с адресом 12, т. е. из регистра 2 вызывается значение α_M , а расчет идет по (4.3) при $\alpha_{\mathfrak{I}}=\alpha_M$.



Fuc. 4.3. Двухтактный каскад на мощных МДП-транзисторах (a) и положение его нагрузочной при разных $R'\mathbf{u}$ (\vec{o})



 $Puc. \ 4.4.$ Зависимость выходной мощности двухтактного каскада от R'в при разных E

Программа БП7 иллюстрирует применение расчета ВАХ для инженерного расчета выходной мощиости P_{\sim} двухтактного каскада (рис. 4.3,a) на мощных МДП-транзисторах и приведенного сопротивления нагрузки $R_{\rm H}$ при E= const по формулам:

$$P_{\sim} = 0.5 (E_{\rm C} - U_{\rm C0}) I_{\rm CM}$$
: (4.4)

$$R'_{ii} = 2P_{\sim} / I_{CM}^2,$$
 (4.5)

где значение амплитуды тока стока одного плеча $I_{\rm CM}$ при амплитудном значении папряжения на затворе $U_{\rm 3M}$ вычисляется по формуле (3.17), записанной в виде

$$I_{\text{CM}} = S \left(U_{\text{3M}} - U_0 + \frac{1}{2} + bU_{\text{3M}}^2 \right) \left[1 - e^{-pU_{\text{CO}}/\left(U_{\text{3M}} - U_0 + bU_{\text{3M}}^2 \right)} \right].$$
(4.6)

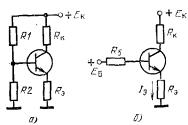
На рис. 4.4 приведены результаты расчета P_{\sim} по программе БП7 для двухтактного каскада на мощных МДП-транзисторах КП904 с типовыми параметрами: $S=0,502~{\rm A/B};~U_0=1~{\rm B};~\rho=1;~b=-0,012~{\rm H}~U_{3_{\rm M}}=15~{\rm B}.$ Из них отчетливо видно существование оптимального значения $R_{\rm H}'=R_{\rm H0}$, при котором P_{\sim} максимальна. При $R_{\rm H}'>R_{\rm H0}$ транзисторы недоиспользуются по току, а при $R_{\rm H}'< R_{\rm H0}$ падает коэффициент использования по напряжению из-за роста остаточного напряжения $U_{\rm C0}$ (см. рис. 4.3, 6). Расчет P_{\sim} справедлив в области средних частот, где влиянием инерционности каскада допустимо пренебречь, и при идеальном трансформаторе.

Упомянутые программы расчета статических ВАХ различных полупроводниковых приборов могут входить (в виде подпрограмм) в более сложные про-

граммы, рассматриваемые далее.

4.2. РАСЧЕТ НЕЛИНЕЙНЫХ ЭЛЕКТРОННЫХ ЦЕПЕЙ НА ПОСТОЯННОМ ТОКЕ

Расчет нелинейных цепей сводится к определению положения рабочих точек активных приборов. Так, для простейшей цепи (см. рис. 4.1, а), к которой могут быть сведены более сложные цепи, рабочая точка определяется из решения системы уравнений



Puc. 4.5. Каскады с эмиттерной стабилизацией:

а — с делителем; б — е отдельным источником базового смещения

$$I = \int (U);$$

$$I = (E - U)/R,$$

$$(1.7)$$

первое из которых — нелинейное уравнение вольт-амперной характеристики нелинейного элемента (НЭ), второе — уравнение нагрузочной прямой резистора R. Аналитического решения система (4.7) обычно не имеет. Одиако решение (4.7) возможно (наряду с приближенными графическими методами) численными методами, описанными в гл. 2.

Рассмотрим расчет типовых нелинейных цепей на биполярном транзисторе, показанных на рис. 4.5. Схема па рис. 4,5, а сводится к схеме на рис. 4.5, 6, ток эмиттера $I_{\mathfrak{S}}$ которой определяется из решения нелинейного уравнения

$$E_{6} - (1 - \alpha_{N}) I_{9} R_{6} + I_{K0} R_{6} - I_{9} R_{9} - m \varphi_{T} \ln \frac{I_{9}}{I_{30}} = 0$$
 (4.8)

или

$$F(l_{\Theta}) = \frac{E_{\rm B}}{R_{\rm f}} + kl_{\Theta} + nl_{\Theta} - \frac{m\varphi_T}{R_{\rm f}} \ln \frac{l_{\Theta}}{l_{\Theta}} = 0, \tag{4.9}$$

где

$$k = (\alpha_N - 1 - R_0/R_0);$$

$$n = I_{K_0}/I_{20} \approx \alpha_N/\alpha_I.$$
(4.10)

По программе БП8 параметры R1, R2, $R_{\rm a}$ и $E_{\rm K}$ схемы на рис. 4.5, a пересчитываются в параметры

$$E_{5}/R_{5} = E_{K}/R_{1} = C6;$$
 (4.11)

$$1/R_6 = 1/R_1 + 1/R_2 = P8 (4.12)$$

єхемы на рис. 4.5, δ , затем вычисляется значение k=P6 согласно (4.10); $I_{90}=P5$ при заданной температуре окружающей среды T согласно (4.1) и

$$\frac{m\varphi_T}{R_{\delta}} = \frac{m\varphi_T (20^{\circ}\text{C})}{R_{\delta}} \left(1 + \frac{T - 20^{\circ}\text{C}}{293^{\circ}\text{C}} \right) = P7, \tag{4.13}$$

где ϕ_T (20°C) = 0,025 В. Эти параметры по программе заносятся соответственно в ячейку 6 стека и регистры 8, 6, 5 и 7.

Программа БП9 является продолжением программы БП8 для схемы на рис. 4.5, a или может использоваться самостоятельно при расчете схемы на рис. 4.5, b. С помощью этой программы вычисляется I_9 методом подекадного приближения при $F(x) = F(I_9)$ вида (4.9).

Оценим дополнительные возможности программ БП8 и БП9. Они могут использоваться (наряду со специальными программами, описанными в § 4.3) для расчета температурной нестабильности тока покоя усилительных каскадов. Результаты расчета схемы на рис. 4.5, a с параметрами $R_1=20$ кОм; $R_2=10$ кОм; $R_3=1$ кОм и $E_{\rm K}=10$ В приведены в табл. 4.1.

Таблица 4.1 Результагы расчета параметров схемы на рис. 4.5, а

T	+20°C	+-60°C
α_N $I_{\partial O}$, MA, HPH $T_{\mathbf{y}} = 8^{\circ}$ C k $m \varphi_T/R_6$, MA $I_{\partial O}$, MA	0,95 0,001 0,2 7,5·10 ⁻³ 2,235	$ \begin{array}{c c} 0,96 \\ 0,032 \\ -0,19 \\ 8,524 \cdot 10^{-3} \\ 3,266 \end{array} $

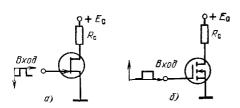


Рис. 4.6. Ключи на маломощном (а) и мощном (б) полевых транзисторах

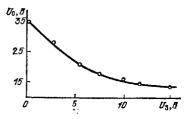


Рис. 4.7. Передаточная карактеристика ключа со схемой на рис. 4,6, б

Дополнив программу БП9 элементарными вычислениями в непрограммируемом режиме по формуле

$$U_{K} = E_{K} - (\alpha_{N} I_{3} + I_{K0}) R_{K},$$
 (4.14)

можно оценить температурную нестабильность напряжения на коллекторе, а рассматривая $E_{\rm B}$ как входное напряжение — построить передаточную характеристику каскада со схемой на рис. 4.5, б, т. е. зависимость $U_{\rm K}=\phi(E_{\rm B})$ или $U_{\rm K}=\phi(U_{\rm Bx})$. Взяв два близких отсчета в пределах линейного участка передаточной характеристики, нетрудно найти коэффициент усиления в режиме малого сигнала по формуле

$$K_{\sim} = \frac{\Delta U_{\text{Bbl X}}}{\Delta U_{\text{BX}}} = \frac{\Delta U_{\text{K}}}{\Delta E_{\text{B}}} = \frac{U_{\text{K1}} - U_{\text{K2}}}{E_{\text{B1}} - E_{\text{B2}}}.$$

Для расчета остаточного напряжения ключа на маломощном ключевом транѕисторе (рис. 4.6, a) можно использовать программу БП10 решения нединейного уравнения

$$F(U_{\rm C}) = E_{\rm C} - U_{\rm C} - bR_{\rm C} \left[(U_3 - U_0) U_{\rm C} + (1+\eta) U_{\rm C}^2 / 2 \right] = 0 \tag{4.15}$$

методом подекадного приближения с записью $\varepsilon=10^{-3}$ и $\Delta U_{\rm C1}=1$ В непосредственно в программу. Программу удобно использовать при получении $\overline{U}_{\rm C}=U_{\rm OCT}$ при различных U_3-U_0 , вводимых в регистр X. В (4.15) использована аппроксимация вольт-амперных характеристик, справедливая при $U_3-U_0>U_{\rm C}$.

Расчет передаточной характеристики ключа на мощном МДП-транзисторе (рис. 4.6, δ) требует решения нелинейного уравнения

$$F(U_{\rm C}) = E_{\rm C} - U_{\rm C} - SR_c \left(U_3 - U_0 - bU_3^2 \right) \left[1 - \exp \left(-\rho U_{\rm C} / \left(U_3 - U_0 - bU_3^2 \right) \right) \right] = 0.$$
(4.16)

Лля уменьшения числа шагов программы это уравнение целесообразно представить в виде

$$F(U_{\rm C}) = SR_{\rm c} (bU_{\rm 3}^2 - U_{\rm 3} + U_{\rm 0}) \times \times \left[\exp pU_{\rm C}/(bU_{\rm 3}^2 - U_{\rm 3} + U_{\rm 0}) - 1\right] + U_{\rm C} - E_{\rm C} = 0. \tag{4.17}$$

С помощью программы БП11 вычисляется $U_{\rm C}=f\left(U_3\right)$ согласно (4.17) методом полекадного приближения с записью $\varepsilon=10^{-2}\,$ и $\Delta U_{\rm C1}=1\,$ В непосредственно в программу. Для получения \overline{U} при заданном U_3-U_0 достаточно это значение набрать на цифровых клавищах и нажать клавищу С/П. При этом автомутически значение U_3-U_0 заносится в регистр 8, а $\Delta U_{\rm C1}-$ в регистр 3. Предшествующее значение сохраняется в регистр 2, что уменьшает число итераций, нужных для приближения к новому значению $\overline{U}_{\rm C}$. Расчет нужно начинать с больших U_3-U_0 и соответственно малых $\overline{U}_{\rm C}$. Для уменьшения времени вычисления член ($bU_3^2-U_3^2+U_0^2$) вычисляется в начале программы один раз.

По программе ПП9/34 на программируемом микрокалькуляторе «Электроника Б3-34» уравнение (4.17) решается методом секущих — хорд, описанным в ξ 2.3. На рис. 4.7 показана расчетная зависимость $\overline{U_C} = f\left(U_3\right)$ для ключа на мощном МДП-транзисторе КП904, полученная при следующих данных: b = 0.01 1/B; p = 1; $E_C = 35$ B: $R_C = 5$ Ом и S = 0.5 А/В

4.3. РАСЧЕТ ТЕМПЕРАТУРНОЙ НЕСТАБИЛЬНОСТИ КАСКАДОВ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ

Известные схемы одиночных каскадов на биполярных транзисторах являются модификацией обобщенной схемы на рис. 4.8. Их можно получить из этой схемы, полагая сопротивления тех или иных резисторов равными нулю или бесконечности.

Апализ приведенной схемы показывает, что приращение коллекторного тока $\Delta I_{\rm K}$ при изменении температуры T определяется приращением обратного тока коллекторного перехода $\Delta I_{\rm K0}$, смещением входной вольт-амперной характеристики на величину $\xi \Delta T$ (где $\xi \approx -2.5~{\rm MB}/{\rm ^{o}C}$ — смещение на $1{\rm ^{o}C}$) и относительной нестабнльностью $\Delta \beta_N/\beta_N$ коэффициента передачи тока базы в заданном диапазоне температур [30]. При этом

$$\Delta I_{K} = S \left[\Delta I_{K0} + \frac{\xi \Delta T}{R_{0} + R_{0}} + (I_{B} + I_{K0}) \frac{\Delta \beta_{N}}{\beta_{N}} \right],$$
 (4.18)

где S — коэффициент нестабильности, а

$$R_{6} = R_{1} (R_{2} + R_{H1}) / [R_{1} + (R_{2} + R_{H1})]$$
(4.10)

- эквивалентное сопротивление в цепи базы.

Для S схемы на рис. 4.3 известно выражение [31]

$$S = (1 + D)/(1 - \alpha_N + D),$$

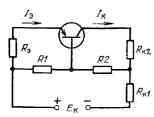
где
$$D = \frac{R_9}{R_1} + \frac{R_9}{R_2} + \frac{R_{\rm HI}}{R_2} + \frac{R_9 R_{\rm H2}}{R_1 R_2}$$
.

Для удобства расчета S на микрокалькуляторе преобразуем эти выражения, учтя, что $\alpha_N = \beta_N/(\beta_N + 1)$. Тогда получим:

$$(1+D) = 1 + \frac{R_3}{R_1} + \frac{R_6}{R_2} + \frac{R_{R1}}{R_2} + \frac{R_3 R_{R2}}{R_1 R_2};$$
 (4.26)

$$S = \left[1 - \frac{1}{(1+1/\beta_N)(1+D)} \right]^{-1} \cdot \tag{4.21}$$

Обычно при расчетах задаются положением рабочей точки на входной и выходной вольт-амперных характеристиках каскада (см. § 4.2 и относящиеся к нему программы). После этого по закону Ома рассчитывают сопротивления ре-



Puc. 4.8. Обобщенная схема стабилизации каскада ча биполярном транзисторе

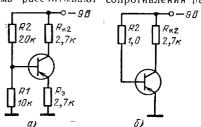


Рис 4.9. Примеры в расчету коэффициента нестабильности S

висторов для выбранной схемы каскада. Завершает расчет по постоянному току определение S и ΔI_{κ} .

По программе БП12 рассчитывается S для обобщенной схемы, а по сопряженной с ней программе БП13 — значение ΔI_K . При совместном использовании этих программ вначале необходимо найти значение

$$\Delta I_{K0} = I_{K0} (T) - I_{K0} (T_0) \tag{4.22}$$

и исстабильность $\Delta\beta_N/\beta_N$ оценить из справочных данных (см. например, [32]).

Затем по программе БП12 находится значение S и запоминается в регистре 8. После этого вводится программа БП13, причем значения R_9 , R_1 и S вводить не требуется. Вычисленное значение ΔI_K сравнивается с допустимым, и если оно меньше последнего, результат расчета считается удовлетворительным. В противном случае следует повторить расчет, задавшись целью получить меньшее значение S. Часто величина S служит основным показателем температурной нестабильности каскада, и ΔI_K не рассчитываются. Достаточно хорошей температурной стабильностью обладают обычные резисторные каскады при S < (3-5).

Уменьшить S можно, увеличивая R_0 и уменьшая R_6 . Однако при уменьшении R_6 может сильно возрасти влияние второго члена в квадратных скобках (4.18). Иногда целесообразно рассчитать значения $\Delta I_{\rm K}$ при различных S, $R_{\rm 9}$ и $R_{\rm 6}$, выбрав эти значения по минимуму $\Delta I_{\rm K}$.

= 85.2 MKA.

4.4. РАСЧЕТ РЕЖИМНОЙ И ТЕМПЕРАТУРНОЙ НЕСТАБИЛЬНОСТЕЙ КАСКАДОВ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ

Стабилизация каскада на полевом транзисторе (рис. 4.10) обеспечивается соответствующим выбором постоянной составляющей тока стока $I_{\rm C}$, а также ввелением отрицательной обратной связи по току, осуществляемой включением резистора $R_{\rm H}$. В усилительных каскадах рабочая точка полевого транзистора выбирается на пологом участке выходной вольт-амперной характеристики. Обозначив ток стока при $U_3=0$ через $I_{\rm CM}$ и учтя падение напряжения на резисторе $R_{\rm H}$, получим [33]

$$I_{\rm C} = I_{\rm CM} (1 - (I_{\rm C} R_{\rm M} - E_3)/U_0)^2$$
 (4.23)

 \mathcal{F} нфференцируя (4.23) по параметрам $I_{C\,\mathbf{M}},\ U_0\,$ и T, после простых преобразований и замены дифференциалов малыми приращениями находим

$$k_{\rm M} = \frac{\Delta I_{\rm C}/I_{\rm C}}{\Delta I_{\rm CM}/I_{\rm CM}} = \left[1 + \frac{2\sqrt{I_{\rm C}I_{\rm CM}}R_{\rm H}}{U_{\rm 0}}\right]^{-1}; \tag{4.24}$$

$$k_0 = \frac{\Delta I_{\rm C}/I_{\rm C}}{\Delta U_0/U_0} = \frac{2\left(1 - \sqrt{I_{\rm CM}/I_{\rm C}}\right)}{1 + 2\sqrt{I_{\rm C}I_{\rm CM}}R_{\rm H}/U_0}; \tag{4.25}$$

$$\frac{\Delta I_{\rm C}}{\Delta T} = \frac{\frac{\Delta I_{\rm CM}}{I_{\rm CM} \Delta T} + 2\left(\sqrt{\frac{I_{\rm CM}}{I_{\rm C}}} - 1\right) \frac{\Delta U_0}{U_0 \Delta T}}{1 + 2\sqrt{I_{\rm C} I_{\rm CM}} R_{\rm H}/U_0} I_{\rm C}.$$
 (4.26)

Коэффициенты нестабильности по масштабному току стока $k_{\rm M}$ и пороговому напряжению k_0 показывают, какую часть составляет отиосительная нестабильность тока стока $\Delta I_{\rm C}/I_{\rm G}$ от относительных нестабильностей $\Delta I_{\rm GM}/I_{\rm CM}$ и $\Delta U_0/U_0$. Они характеризуют стабильность каскада при смене транзисторов. Величина $\Delta I_{\rm C}/\Delta T$ характеризует изменение, $I_{\rm C}$ иа 1°C.

Расчет по формулам (4.24) — (4.26) реализуется программой ВП14. Для иллюстрации расчета по ней рассмотрим следующий пример. Пусть $\Delta I_{\rm CM}/\Delta T=-0,002$ мА/°С; $I_{\rm CM}=1$ мА; $^{\prime}U_0=-1$ В и $\Delta T/\Delta U_0=-400$ °С/В (это значение занесено как типовое в программу). Результаты вычислений соответствуют типовым данным для полевого транзистора КПС104В с управляющим p-n-переходом (табл. 4.2). Из таблицы видно, что при больших $I_{\rm C} \rightarrow I_{\rm CM}$

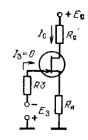


Рис. 4.10. Каскад на полевом транзисторе с автоматическим смещением

ток стока (как и $I_{\rm CM}$) падает с ростом температуры. При уменьшении $I_{\rm C}$ величина $|\Delta I_{\rm C}/\Delta T|$ падает и затем $\Delta I_{\rm C}/\Delta T$ меняет знак. Значение тока $I_{\rm C}=I_{\rm C0}$, при котором $\Delta I_{\rm C}/\Delta T=0$, равно

$$I_{\text{C0}} = I_{\text{CM}} \left(1 - \frac{\Delta I_{\text{CM}}}{\Delta T} \frac{U_0}{2I_{\text{CM}}} \frac{\Delta I}{\Delta U_0} \right)^{-2} \cdot \tag{4.27}$$

К сожалению, при выборе $I_{\rm C}=I_{\rm C0}$ значительно уменьшается крутизна полевого транзистора и уменьшается коэффициент усиления каскада. Поэтому более гибкой является стабилизация каскада с помощью отрицательной обратной связи. Для устранения этой связи по переменному току резистор $R_{\rm R}$ шунтируется конденсатором большой емкости.

Таблица 4.2 Результаты расчета нестабильности каскада на полевом транзисторе

R _u , O _M			0		5 000			
$I_{\mathbf{G}}$, MA $k_{\mathbf{M}}$ $\Delta I_{\mathbf{C}}/\Delta T \cdot 10^{-7}$, A/°C	0,2 1 2,472 8,361	0,5 1 0,828 0,335	0,75 1 0,309 —9,199	1 0 -20	0,452	0,5 0,124 0,103 0,044	0,032	1 0,091 0 -1,818

4.5. РАСЧЕТ СТАТИЧЕСКИХ РЕЖИМОВ НА МИКРО-ЭВМ

С помощью микро-ЭВМ могут решаться существенно более сложные, чем рассмотренные в § 4.1—4.4, задачи расчета и моделирования статического режима работы нелинейных схем. Например, одной из таких задач является расчет напряжения на стоках $\bar{U}_{\rm C}$ параллельно включенных мощных МДП-транзисторов с произвольными параметрами $S_i,\ U_{0i},\ b_i$ и ρ_i , а также распределения токов их стоков $I_{\rm C}$ і при заданном напряжении на затворе U_3 (рис. 4.11). Такая задача возникает при проектировании многоструктурных мощных МДП-транзисторов, расчете ключей на параллельно включенных мощных МДП-транзисторах, расчете усилителей с распределенным усилением и т. д. Математически решение дайной за-

дачи сводится к подбору такого значения $\overline{U}_{\mathbb{C}}$, при котором соблюдается условие

$$\frac{E_{C} - \overline{U}_{C}}{R_{c}} - \sum_{i=1}^{N} S_{i} \left(U_{3} - U_{0i} + b_{i} U_{3}^{2} \right) \times \\
\times \left[1 - \exp\left(-\rho_{i} \overline{U}_{C} / \left(U_{3} - U_{0i} + b_{i} U_{3}^{2} \right) \right) \right] = 0, \tag{4.28}$$

и расчету

$$I_{Ci} = S_i \left(U_3 - U_{0i} + bU_3^2 \right) \left[1 - \exp \left(-p_i \overline{U}_C / (U_3 - U_{0i} + b_i U_3^2) \right) \right]$$

для каждого транзистора. Если получаются $I_{\mathrm{C}i} < 0$, программа должна интер-

претировать их как нулевые.

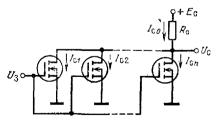
Пля решения такой задачи необходимо большое число регистров (ячеек памяти). Например, при N=30 только для запоминания $S_i,\ U_{0i},\ b_i$ и p_i потребуется 120 ячеек памяти. В пакете программ микро-ЭВМ «Электроника ДЗ-28» приведена программа ПП4/28, реализующая такой расчет при $N\leqslant 30$. В программе используется косвенная адресация ячеек памяти по четырем группам последних. Адреса их указываются регистром-счетчиком 0000.

Массив S_i , U_{0i} , b_i и p_i размещается в 4N ячейках от 0001 до 4N (при N=30 всего 120 ячеек). При выполненни расчетов нужные параметры вызываются из соответствующей ячейки памяти. По программе решается нелинейное уравне-

ние (4.28) методом подекадного приближения.

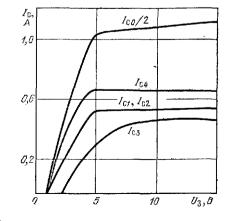
Порядок работы для данной программы следующий. Вводятся N, ε , массив S_i , U_{0i} , b_i и p_i , R_c , E_C и U_3 (после ввода каждого параметра нажимается клавиша S). После ввода U_3 программа автоматически переходит к вычислению \overline{U}_C с точностью до ε . Общий ток стоков I_{C0} всех транзисторов заносится в ЯП 1514, а токи $I_{C1}...I_{CN}$ — в ЯП с номерами от 121 до (120 + N). При смене U_3 достаточно набрать новое значение U_3 и нажать клавишу S.

По описанной программе были рассчитаны зависимости $I_{\rm C1}$... $I_{\rm C4}$ и $I_{\rm C0}$ для четырех парадлельно включенных мощных МДП-транзисторов (рис. 4.12) при следующих исходных данных: N=4; $\varepsilon=0.001$; $S_1=0.15$ A/B; $U_{01}=1$ B; $b_1=0.002$ 1/B; $p_1=1$; $S_2=0.15$ A/B; $U_{02}=1$ B; $b_2=0.002$ 1/B; $p_2=1$; $S_3=0.12$ A/B; $U_{03}=2$ B; $b_3=0.002$ 1/B; $p_3=1$; $S_4=0.18$ A/B; $U_{04}=0.5$ B; $S_4=0.002$ 1/B; $S_4=0.002$ 1/B; S



Puc. 4.11. Параллельное включение мошных МДП-транзисторов

Рис. 4.12 Результаты расчета распределения токов четырех параллельчо включенных мощных МДП-траизисторов



расчет Другой задачей является ключа (например, $\overline{U}_{C} = U_{\text{ner}}$ рис. 4.6, б) с учетом саморазогрева мощного МДП-транзистора. Такой расчет можно выполнить, моделируя пропесс саморазогрева на микро-ЭВМ по следующему алгоритму:

1) находим температуру кристалла.

$$T = U_C I_C R_T + T_0, (4.29)$$

где $T_{
m 0}$ — температура окружающей среды; $U_{
m C} I_{
m C}$ — выделяемая мощность; R_T — тепловое сопротивление, причем в первом приближении полагаем $U_{\mathrm{C}}=0$ и $T = T_0$;

2) вычисляем температурозависимые параметры

$$S(T) = S[1 + \alpha_S(T - 20^{\circ}C)];$$
 (4.30)
 $U_0(T) = U_0[1 + \alpha_H(T - 20^{\circ}C)],$ (4.31)

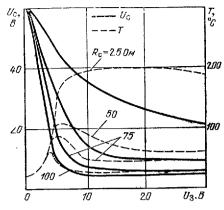


Рис. 4.13. Расчетные зависимости напряжения на стоке МДП-транзистора в схеме ключа рис. 4.6, б и температуры кристалла от напряжения Us

где $lpha_{S}$ и $lpha_{U}$ — температурные коэффициенты изменения крутизны и порогового папряжения;

3) методом подекадного приближения находим значение U_{CN} , решая грансцендентное уравнение

$$\begin{aligned} & (E_C - U_{CN}) / R_c - S(T) \left[U_3 - U_0(T) - bU_3^2 \right] \times \\ & \times \left\{ 1 - \exp\left\{ -pU_{CN} / \left[U_3 - U_0(T) - bU_3^2 \right] \right\} \right\} = 0, \end{aligned}$$
(4.32)

где N — номер приближения;

4) подставляя найденное значение U_{CN} в (4 29), повторяем расчет $\mathfrak s$ п.1 и т. д. до тех пор, пока не будет соблюдаться условие

$$U_{CN} - U_{CN-1} = \varepsilon; (4.33)$$

5) при выполнении (4.33) прекрашаем счет и получаем значение $\overline{U}_{
m C}$ с точностью до є,

Таким образом, в программе необходимо организовать два итерационных цикла. Один-внутренний - используется для решения трансцендентного уравнения (4.32), другой — внешний — для моделирования процесса саморазогрева. Такой расчет осуществляется на микро-ЭВМ «Электроника ДЗ-28» (программа ПП5/28). Все параметры схемы и транзистора (кроме U_3) последовательно заносятся в ячейки памяти с номерами от 0001 до 0011 (S, U_0 , b, p, α_S , α_U , $E_{C\bullet}$ $R_{\rm c},\,T_{\rm o},\,R_{T},\,\,\epsilon)$ путем косвенной адресации к ним (счетчик организован в Я(10000)). После ввода U_3 рассчитываются $I_{\mathsf{C}} = \mathsf{PY}$ и $U_{\mathsf{C}} = \mathsf{PX}$. Значения T, S (T) н U_0 (T) заносятся соответственно в ячейки памяти 0015, 0106 и 0107. Например, при S=0,15 A/B; $U_0=1$ B; b=-0,002 1/B; p=1; $\alpha_S=-0$,002 1/°C; $lpha_U = -$ 0,005 1/°C (параметры мощного МДП-транзистора КП901); $E_{
m C} =$ =60 B; $R_{\rm c}=50$ Ом; $T_{\rm 0}=20^{\rm o}$ C; $R_{T}=5^{\rm o}$ С/Вт; $\varepsilon=0{,}001$; $U_{\rm 3}=10$ В получим: $I_{\rm C}=0{,}927$ А; $U_{\rm C}=13{,}645$ В; $T=83{,}25^{\rm o}$ С (отсюда видно, насколько существен перегрев мощного МДП-транзистора по отношению к температуре окружающей среды). Из рис. 4.13, на котором показаны рассчитанные по программе ППБ/28 зависимости, видно, что с уменьшением $R_{\rm C}$ температурный режим ключа существенно ухудшается. Для уменьшения остаточного напряжения $U_{\rm C}$ и температуры кристалла следует отпирать ключ большими U_3 (более 15 B , но не выше $U_{3M} = 30$ В).

ГЛАВА 5

СПЕКТРАЛЬНЫЙ И ЭНЕРГЕТИЧЕСКИЙ АНАЛИЗ НЕЛИНЕЙНЫХ И ИМПУЛЬСНЫХ УСТРОЙСТВ

5.1. РАСЧЕТ СПЕКТРА ГРАФИЧЕСКИ И ТАВЛИЧНО ЗАДАННЫХ ИМПУЛЬСНЫХ СИГНАЛОВ

Сигналы в импульсных и нелинейных устройствах резко отличаются от синусоидальных. Это делает особенно важным их спектральный анализ, включающий оценку степени искажений сигналов, расчет отдаваемой из заданных частотах мошности, определение коэффициента нелинейных искажений и т. д.

Спектр периодических несинусондальных сигналов y (t) с периодом повторения $T_1=1/f_1$ и частотой повторения f_1 задается зависимостью амплитуд и фаз гармоник от частоты. Он определяется разложением в усеченный m членами ряд Фурье функции y (t). Для последней, заданной N дискретными отсчетами $y_i=y$ (t_i) при i=1,2,...,N с шагом $\Delta t=T_1/N$, в тригонометрической форме этот ряд имеет вид

$$y(t) = A_0 - \sum_{n=1}^{m} |A| \cos(2\pi n f_1 t + \varphi) =$$

$$= A_0 + \sum_{n=1}^{m} (A_s \sin 2\pi n f_1 t - |-A_c \cos 2\pi n f_1 t), \qquad (5.1)$$

где n — номер гармоники; A_0 — постоянная составляющая y (t). Амплитуда синусной A_s н косинусной A_c составляющих

$$A_{s.c}(f) = \frac{2}{T_1} \int_{0}^{T_1} y(t) \frac{\sin}{\cos} (2\pi n f_1 t) dt, \qquad (5.2)$$

иричем для определения A_s берется $\sin{(2\pi n f_1 t)}$, а для A_c — соответственно $\cos{(2\pi n f_1 t)}$. Амплитудно- и фазочастотная характеристики спектра определяются выражениями:

$$A(f) = \sqrt{[A_s(f)^2 + A_c(f)^2]}; (5.3)$$

$$\varphi(f) = - \arctan[A_s(f)/A_c(f)].$$
 (5.4)

Для периодических y (t) имеют смысл частоты $f=nf_1$, где n — целые числа (номера гармоник).

Численные методы спектрального анализа сводятся к численному интегрированию (5.2) и определенню A (f) и ϕ (f) по формулам (5.3) и (5.4). Их реализация на микрокалькуляторах довольно сложна. При вычислении A_8 и A_c численным методом прямоугольников [2]

$$A_{s,c} = \frac{2}{N} \sum_{i=1}^{N} y_i \frac{\sin}{\cos} \left(\frac{2\pi ni}{N} \right)$$
 (5.5)

и методом трапеций [34] точность спектрального анализа низка, так как входящие в (5.2) быстроосциллирующие множители при практически приемлемом шаге интегрирования Δt обусловливают ухудшение точности интегрирования по мере роста n или $f=nf_1$. Уменьшение Δt требует использования неоправданно большого числа отсчетов y_i функции y (t) и ведет к увеличению времени анализа.

Повысить точность интегрирования можно, применяя следующий метод [10]. Представим y (t) аппроксимирующей функцией на каждом шаге Δt , произведение которой на осциллирующие члены дает аналитически интегрируемую функцию. В этом случае шаг Δt достаточно выбирать лишь исходя из точности аппроксимации y (t), а не всего подынтегрального выражения (5.2). Тогда из ЭВМ осуществляются расчет N частиых интегралов по точным формулам и их суммирование.

Простейшей для y (t) будет ступенчатая аппроксимация, при которой в пределах шага Δt $y_i = y$ (t_i) = const. При этом ступенчатая функция аппроксимации располагается слева от y (t), т. е. сдвинута на полшага (— $\Delta t/2$). Повысить точность аппроксимации можно, устранив этот сдвят, т. е. добавив к текущему времени t величину + $\Delta t/2$. Тогда вместо (t.2) можно ваписать

$$A_{s,c}(f) = \frac{2}{T_1(2\pi n f_1)} \sum_{i=1}^{N} y_i \times \left[\frac{\Delta t}{\cos \left[2\pi n f_1 \left(t + \frac{\Delta t}{2} \right) \right] d \left[2\pi n f_1 \left(t + \frac{\Delta t}{2} \right) \right]}.$$
 (5.6)

Выполнив интегрирование в (5.6) аналитически, после простых преобразований получим

$$A_{s,c}(f) = \frac{2}{N} \left(\frac{\sin \pi n f_1 \, \Delta t}{\pi n f_1 \, \Delta t} \right) \sum_{i=1}^{N} y_i \, \sin \left(2\pi n f_1 \, \Delta t_i \right).$$

От (5.5) это выражение отличается корректирующим множителем перед знаком суммы, меньшим 1. Это отличие существенно повышает точность расчета

 $A_{s,o}$ (f). Иногда желательно разложение в ряд Фурье в синусондальными членами, в частности для периодических y (t) ≈ 0 при t=0. Введя нормированную переменную $x=\omega_1 t=2\pi t$, такой ряд можно записать в виде

$$I(x) = A_0 + \sum_{n=1}^{m} |A| \sin(nx + \varphi),$$
 (5.7)

где

$$A = \sqrt{A_s^3 + A_s^3}$$

$$A_{s,c} = \frac{2}{N} \left(\frac{\sin \pi n/N}{\pi n/N} \right) \sum_{i=0}^{N} y_i \sin \left(\frac{2\pi n i}{N} \right).$$

Фазовый едвиг гармоник определяется выражением

$$\varphi(x) = \arctan(A_o/A_o). \tag{5.8}$$

Аналогично маходится спектр непернодических сигналов, определенных на конечном промежутке времени от 0 до t_0 (финитиме сигналы). Их спектральная промежутке времени от 0 до t_0 (финитиме сигналы).

$$S(i\omega) = S_c + iS_s = S(\omega) e^{i\phi(\omega)}$$

аричем расчет по описанному методу дает

$$\mathbf{S}_{s,s} = \int_{-\infty}^{t_0} \mathbf{y}_t \sin \left(2\pi f t\right) dt = \Delta t \left(\frac{\sin \pi f \Delta t}{\pi f \Delta t}\right) \sum_{i=1}^{N} \mathbf{y}_t \sin \left(2\pi f i \Delta t\right). \tag{5.9}$$

HOM STOM

$$S(f) = \sqrt{[S_s(f)^2 + S_c(f)^2]};$$
 (5.10)

$$\varphi(f) = - \operatorname{arctg} \left[S_s(f) / S_c / (f) \right]. \tag{5.11}$$

Ме (5.9) и (5.6) следует, что при $f = nf_1$

$$\frac{S_{s,g}}{\Delta t} = \frac{A_{s,c}N}{2} \times \frac{S}{\Delta t} = \frac{AN}{2} ,$$

т. є. $A \cup X$ периодических и финитных колебании по форме идентич ны и отличаются только масштабом. Поэтому их спектральный анализ может проводиться по

одной программе БП15.

Программа БП15 имеет ряд особенностей. Перед ее пуском в регистр 8 вводится число N ненулевых отсчетов y_i , в регистр 5 вводится первый отсчет u_i , а на цифровых клавишах набирается число n (при непериодических y (t) значение n задает $f=nf_1$, где $f_1=1/t_0$, причем n может быть любым положительным числом). После нажатия клавиш B/O и C/Π вычисляется значение $\pi n/N$, обнуляются регистры 2, 3 и регистр 3 счетчика i=(i+2), а затем обрабатывается первый отсчет. Величины $\sin (2\pi ni/N)$ и соз $(2\pi ni/N)$ вычисляются одной операцией (e^{ix}), что сокращает время обработки каждого отсчета примерно до 5 с. После ввода каждого отсчета y_i нажимается клавиша C/Π . По окончании ввода всех ненулевых отсчетов суммы

$$\sum_{i=1}^{N} y_i \sin \left(\frac{2\pi ni}{N}\right)$$

накапливаются в регистрах 2 и 3. Для перехода к вычислению величин

$$\frac{\frac{NA_{s,c}}{2} = \left(\frac{\sin \pi n/N}{\pi n/N}\right) \sum_{i=1}^{N} y_i \sin \left(\frac{2\pi n_i}{N}\right);}{\frac{NA}{2} - \sqrt{\left(\frac{NA_s}{2}\right)^2 + \left(\frac{NA_c}{2}\right)^2}}$$

нажимаются клавиши БП 6 и С П. Нажав еще раз клавишу С/П, получим $\mathsf{tg} \, \phi = - (A_s/A_c)$.

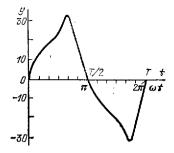
Для контроля программы вычислим спектр прямоугольного импульса с длительностью $t_{\rm H}=1$ мкс, периодом $T_1=4$ мкс и амплитудой $U_{\rm H}=1$ В. В табл. 5.1 представлены результаты расчета по программе [2], реализующей вычисления по (5.5), и по программе БП15 при N=32 (восемь отсчетов $y_i=1$). Как видно из этой таблицы, описанный метод существенно повышает точность расчета S (f).

Таблица 5.1 Контрольный текст для программ спектрального анализа

<i>f</i> , кГц		250	500	750	1 000	1 250
S, 10 ⁻⁷ Β/Γц	Б3-21 [2] Б3-21	9,01764 9,00315	6,40728 6,36619	3,04488 3,00105	7,90569·10 ⁻⁷ 7,30867·10 ⁻⁷	1,87503 1,80063
ф, рад	Б3-21	0,883572	1,374446	0,490873	_	—1,276272 1
S,10 ⁻⁷ В/Гц φ, град	Б3-34	9,0031637 50,624991		1 ' '	1,5835548·10 ⁻⁷ —	1,800632 -73,1249 8 1
S,10 ⁻⁷ В/Гц ф, рад	Д3-28	9,0031646 0,8835735	,	3,0010578 0,490875	4,87248 · 10-8	1,8006278 1,276272
S,10 ⁻⁷ Β/Γμ	Точно	9,00316316	6, 3 6619 7 7	3,0010544	0	1,8006326

Следует отметить, что при использования программы БП15 нельзя задавать n=0, так как при вычислении корректирующего множителя деление на $\pi n/N=0$ приведет к переполнению регистра X. Однако малые n можно задавать (например, $n=10^{-6}$, что на практике эквивалентно заданию n=0).

В качестве другого примера рассмотрим спектральный анализ графически заданного несинусоидального сигнала (рис. 5.1). Так как сигнал y(t) симметричен относительно оси абсцисс, то четных гармоник в разложении не будет. Пусть ординаты y(t) соответствуют примеру в [35, с. 240] и для первого полупериода определяются табл. 5.2 (для второго полупериода они отрицательны).



Puc. 5.1. Зависимость y(t)

Вычисления организуем для ряда (5.7), для чего в программе БП15 заменим вычисления $\operatorname{tg} \phi = -A_s/A_c$ (5.4) на $\operatorname{tg} \phi = A_c/A_s$ (5.8). Результаты вычислений в сравнении с приведенными в [35] даны в табл. 5.3. Соответствие их высокое.

Вольшой интерес представляет вычисление спектров наносекундных импульсов, частоты составляющих которых нередко измеряются долями — единицамя гигагерц, где прямые измерения весьма сложны. На рис. 5.2 показана осциллограмма импульса формируемого наносекундным релаксатором на лавинном транзисторе. Выделим на ней интервал $t_0=10$ нс, т. е. припишем импульсам условно частоту повторения 0.1 ГГц. Составим таблицу зиачений ординат импульсов (табл. 5.4). Результаты вычисления спектра импульса (рис. 5.2, 6) по программе БП15 представлены на рис. 5.3.

Таблица 5.2

	Ординаты $y(t_i)$ для рис. 5.1											
i	1	2	3	4	5	6	7	8	9	10	11	12
$y(t_i)$	7	11	13,5	15,4	17,4	20,5	25,4	32,5	27.7	19,2	10	0

Недостатком программы БП15 является необходимость отдельно вычислять угол ф по значению tg ф, так как в микрокалькуляторе «Электроника Б3-21» вычисление обратных тригонометрических функций не предусмотрено. Этого недостатка нет у подобной программы ПП10/34 (см. приложение 2). Дапные контрольного расчета даны в табл. 5.1. Время обработки одного отсчета по этой программе — около 10 с.

Более серьезным является другой недостаток — необходимость повторноговода всех значений y_i при смене значения n (или $f=n\ i_1$). При большом числостечетов y_i это становится утомительным, а время анализа сильно возрастает.

Таблица 5.3 Результаты спектрального анализа сигнала, форма которого приведена на рис. 5.1

Метод	A _{1s}	A _{1c}	A_1	terφ ₁	A_{3s}	A _{3c}	Α,	ty φ,
Численный	25,32	5,11	25,76	_0,202	3,43	5,11	6	1,17
Графоаналитический [35]	25,3	5,23	25,9	_0,206	3,47	5,1	6	

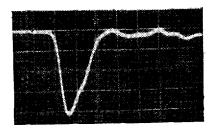


Рис. 52. Осциллограмма импульса, формируемого релаксационным генератором на лавинном траизисторе

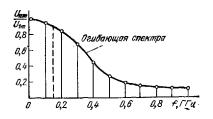


Рис. 5.3. Рассчитанный на микрокалькуляторе спектр выходных импульсов релаксатора на лавинном транзисторе

Таблица 5.4 Ординаты осциллограммы на рис. 5.2 , δ (Δt = 0,25 нс, остальные ординаты нулевые)

t_i , ne	0	0,25	0,5	0,75	1	1,25	1,5	1,75	2	2,25	2,5	2,75	3
U_i , B	0	0,1	0,5	2,5	4,2	3,5	3,2	2,7	2	1,5	0,5	0,3 0	,2

Этих педостатков практически нет в программе ППб/28 (см. приложение 3) спектрального анализа на настольной микро-ЭВМ «Электроника ДЗ-28». Благоларя использованию косвенной адресации ячеек намяти согласно программе обеспечиваются ввод, запоминание и вывод до 150 значений y_i . Поэтому при смене значения f, для которого вычисляются S(f) и $\phi(f)$, повторять ввод отсчет в y_i уже не требуется. Кроме того, скорость вычисления S(f) и $\phi(f)$ после ввода y_i примерно в 100 раз выше, чем при ранее описанных программах для микрокалькуляторов. В табл. 5.1 приведены дашные контрольного расчета по этой программе.

Часто возникает обратная задача — суммирование m членов ряда Фурье (5.1). При m=3,...5 для этого можно использовать микрокалькуляторы «Электроника БЗ-21» [2]. Программа ПП7/28 обеспечивает автоматическое разнесение A_n и ϕ_n по ячейкам памяти микро-ЭВМ «Электроника ДЗ-28» и суммирование до $m\leqslant 75$ членов ряда Фурье. Число m может задаваться любым до m=75. В программе используется косвенная адресация ячеек памяти при вводе пар A_n , ϕ_n и их выводе в процессе суммирования (см. также подобную программу ПП27/34 для $m\leqslant 6$).

При суммировании конечного числа гармоник разрывных функций y (t) следует считаться с эффектом Гиббса [16]. Он заключается в образовании выбросов восстановленной функции y (t), амплитуда которых в местах разрыва можег достигать 18% от амплитуды перепадов y (t). При $m \to \infty$ длительность выбросов $t_n \to 0$.

5.2. РАСЧЕТ ЧАСТОТНЫХ И ФАЗОЧАСТОТНЫХ ХАРАКТЕРИСТИК ЧЕТЫРЕХПОЛЮСНИКОВ ПО ЗАДАННЫМ ПЕРЕХОДНЫМ ХАРАКТЕРИСТИКАМ

О способности линейных четырехполюсников передавать или усиливать импульсные сигналы с заданными нскажениями формы часто судят по их амплитудно- и фазочастотной характеристикам. Они описывают зависимость от частоты f коэффициента передачи K (f) и угла сдвига фаз ϕ (f) выходного сигнала относительно входного. Процесс снятия частотных характеристик 4-полюсников, особенно широкополосных, весьма трудоемок. Нередко он требует применения нескольких генераторов стандартных сигналов, перекрывающих требуемый диапазон частот. Еще сложнее снятие фазочастотных характеристик в широкой полосе частот. При этом одни только частотные характеристики ие позволяют однозначно судить о степени искажений импульсных сигналов при прохождении их через четырехполюсник.

 $\ddot{\rm B}$ то же время появление широкополосных стробоскопических осциллографов (с эффективной полосой частот до 10-20 ГГц) и разработка импульсных генераторов с длительностью фронта импульсов <1 нс на лавинных транзисторах, туннельных днодах и диодах с накоплением заряда позволяют экспериментально наблюдать переходную характеристику 4-полюсников a (f), f. e.

их реакцию на единичный перепад напряжения или тока.

В связи с этим существенный практический интерес представляет расчет частотных и фазочастотных характеристик 4-полюсников по заданной переходной характеристике. В основе его лежит известная связь между нормированной частотной характеристикой A ($i\omega$) и переходной a (f) [37]:

$$A(i\omega) = a(0) + \int_{0}^{\infty} a'(t) e^{i\omega t} dt =$$

$$= a(0) + \int_{0}^{\infty} a'(t) \cos \omega t dt + i \int_{0}^{\infty} a'(t) \sin \omega t dt, \qquad (5.12)$$

где a' (t) — производная переходной характеристики, не имеющей начального скачка; a (0) — начальное значение переходной характеристики; $\omega=2\pi f$

На практике a (t) определяется на конечном интервале времени от 0 до t_0 . Тогда (5.12) можно записать в виде

$$A_c(i\omega) = a_c(0) + A_c(\omega) + iA_s(\omega)$$

где частотная характеристика

$$A(f) = \sqrt{A_s(f)^2 + A_c(f)^2}$$

а фазочастотная

$$\varphi(f) = -\arctan[A_s(f)/A_c(f)].$$

причем

$$A_{s,c}(f) = \int_{0}^{t_0} a'(t) \sin_{\cos}(2\pi f t) dt.$$
 (5.13)

Если a (t) задана N дискретными отсчетами $a_i=a$ (t_i), где $i=1,\,2,\,\ldots\,N$, то в пределах шага $\Delta t=t_0/N$ можно считать

$$a_i' = a'(t_i) = (a_i - a_{i-1})/\Delta t$$
.

Такая ступенчатая аппроксимация a' (t) означает сдвиг ступенчатой кривой на $\Delta t/2$, приводящий к возинкновению значительных фазовых погрешностей. Для устранения этого сдвига к текущему времени t следует прибавить величину $-\Delta t/2$. Тогда вместо (5.13) можно записать

$$A_{s,c}(f) = \sum_{i=1}^{N} \frac{a_i - a_{i-1}}{\Delta t} \int_{(t-1)\Delta t}^{t\Delta t} \frac{\sin\left[2\pi f\left(t - \frac{\Delta t}{2}\right)\right] d\left(t - \frac{\Delta t}{2}\right)}{\cos\left[2\pi f\left(t - \frac{\Delta t}{2}\right)\right]} d\left(t - \frac{\Delta t}{2}\right). \quad (5.14)$$

Выполнив аналитически интегрирование (5.14), находим

$$A_{s,c}(t) = \left(\frac{\sin \pi f \Delta t}{\pi f \Delta t}\right) \sum_{i=1}^{N} (a_i - a_{i-1}) \frac{\sin}{\cos} [\pi f \Delta t (2i - 1)].$$

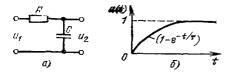


Рис. 5.4. Интегрирующая RC-цепь (а) и ее переходная характеристика (б)

программа БППо рассчитывает Λ (у) и tg ϕ (f) при множителе (sin π / Δt)(π / Δt) = 1. Для уточнения A (f) он может вычисляться вручную. Программа ППП1/34 позволяет вводить и запоминать 11 значений a_i : от a_0 до a_{10} — с использованием коснепной адресации к регистрам памяти. Поэтому при смене i Δt повторять ввод a_i не требуется. Кроме того, эта программа выдает значения ϕ в пре-

делах $\pm 180^\circ$. Программа ПП9/28 для микро-ЭВМ «Электроника Д3-28» обеспечивает ввод и запоминание до 150 отсчетов a_i и вычисляет A(f) и $\varphi(f)$ для заданного f на два порядка быстрее, чем предшествующие программы для микрокалькуляторов.

 $^{+}$ Таблица 55 Расчет A(f) и $\sigma(f)$ по программам для различных микро-3BM

		,,,		1		1
f/τ		0,05	0,1	0,159	0,25	0,5
$A(f)^{*)}$	Б3-21	0,954	0,856	0,713	0,550	0,339
	1	0,953	0,853	0,706	0,535	0,305
$\varphi^{\circ}(f)$		-17.4	-32,9	-46,6	59,0	- 76,1
A(f)	Б3-34	0,954	0,853	0,706	0,535	0,305
$\varphi^{\circ}(f)$		-17,4	-32,9	-46,6	59,0	-76,1
A(f)	Д3-28	0,954	0,853	0,706	0,535	0,305
φ°(f)		-17.0	-32.9	-46,6	59.0	— 76,1
A(f)	Точно	0,954	0,847	0,707	0,537	0,303
$\varphi^{\circ}(f)$		-17,4	-32,1	-4 5	-57,5	—72,3

^{*)} Верхние цифры значения A(t) — вычисленные непосредственно по программе БП16, нижние — уточненные умножением на множитель (sin $\pi t \Delta t$)/ $(\pi t \Delta t)$, вычисленный на том же микрокалькуляторе.

Для проверки правильности программ выполним контрольный расчет A(f) и $\varphi(f)$ для интегрирующей RC-цепи (рис. 5.4, a), переходная характеристика которой (рис. 5.4, b) экспоненциальна: $a(t) = 1 - \exp(-t/\tau)$, где $\tau = RC$, a для A(f) и $\varphi(f)$ заведомо известны аналитические выражения $A(f) = (\sqrt{1 + (2\pi f \tau)^2})^{-1}$; $\varphi(f) = -\arctan (2\pi f \tau)$. Взяв $\tau = 1$ с, N = 10, $t_0 = 5$ с и $\Delta t = 0.5$ с, определим $a(t_f)$ десятью отсчетами: 0,393; 0,632; 0,776; 0,864; 0,918; 0,95; 0,97; 0,982; 0,989; 0,993 (с точностью до трех цифр после запятой). Результаты расчета и точные значения A(f) и $\varphi(f)$ даны в табл. 5.5.

5.3. РАСЧЕТ СПЕКТРА МЕТОДОМ БЕРГА

В резонансных усилителях и умножителях частоты (рис. 5.5) активные приборы часто работают в нелинейном режиме. При этом импульсы выходного тока при синусоидальном входном напряжении имеют форму отсеченных отрезков синусоиды (рис. 5.6). Они характеризуются углом отсечки

$$\theta = -\arccos\left[(E_0 - U_0)/(U_{max})\right]$$
,

где $E_0=E_3$ — напряжение смещения входной цепи; U_0 — напряжение отпирания активного прибора; $U_{\rm mbx}$ — амплитуда входного синусоидального сигнала. Предполагаем, что передаточная характеристика активного прибора линейна при $U_{\rm BX}>U_0$.

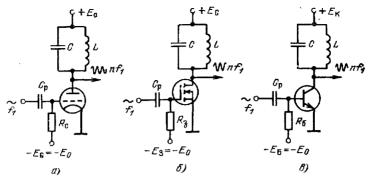


Рис. 5.5. Резонансные каскады на электронной лампе (а), мощном полевом (б) и билолярном (в) транзисторах

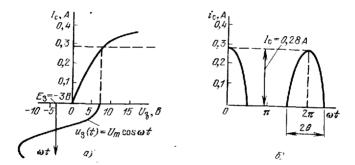


Рис. 5.6. Передаточная характеристика резонансного каскада на мощном МДП-транзисторе КП908 (a) и форма импульса тока стока (6)

Нормированные постоянная составляющая выходного тока и амплитуды первой и высших гармоник определяются значениями коэффициентов Берга [37, 38]:

$$\alpha_0 = \frac{I_0}{I_M} = \frac{\sin \theta - \theta \cos \theta}{\pi (1 - \cos \theta)}; \qquad (5.15)$$

$$\alpha_{1} = \frac{I_{1m}}{I_{M}} = \frac{\theta - \sin \theta \cos \theta}{\pi (1 - \cos \theta)}; \qquad (5.16)$$

$$\alpha_n = \frac{I_{nm}}{I_M} = \frac{2}{\pi} \cdot \frac{\sin n\theta \cos \theta - n \cos n\theta \sin \theta}{n (n^2 - 1) (1 - \cos \theta)}$$
 (5.17)

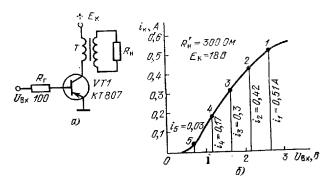
Таким образом, спектральный анализ выходного тока методом Берга сводится к прямым вычислениям по формулам (5.15), (5.17). Коэффициенты Берга рассчитываются по программе БП17 [2] (определяются α_n при любом n=0, 1, 2 и α . д.).

5.4. РАСЧЕТ КОЭФФИЦИЕНТА НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ МЕТОДОМ ПЯТИ ОРДИНАТ

В ряде случаев, например при расчете усилителей низкой частоты, кусочнолииейная аппроксимация передаточных характеристик активных приборов веприемлема. Если известна нелинейная передаточная характеристика, то анализ снектра, ограниченного первыми четырьмя гармониками, можно выполнить

хорошо известным методом пяти ординат [30].

Пусть необходимо вычислить спектр коллекторного тока усилителя (рис. 5.7, a). Передаточная характеристика такого усилителя (рис. 5.7, δ) стронтся как зависимость тока коллектора $i_{\rm K}$ от напряжения на входе $U_{\rm BX} = U_{\rm B9} \ (I_{\rm B}) + R_{\rm r} I_{\rm B}$. Допустим, что рабочий участок ее ограничен почти линейным участком—от значения $i_{\rm K} = i_1$ до $i_{\rm K} = i_3$. Разобьем этот интервал на



Puc. 5.7. Схема трансформаторного однотактного усилителя мощности низкой частоты (a) и его передаточная характеристика (б) с пятью ординатами

четыре равных отрезка и найдем пять ординат зависимости $i_{\rm K}$ ($U_{\rm Bx}$): $i_{\rm I}$, $i_{\rm 2}$, $i_{\rm 3}$, $i_{\rm 4}$ и $i_{\rm 5}$. Составив систему уравнений, описывающих разложение $i_{\rm K}$ (t) в степенной тригопометрический ряд [37], при отмеченных значениях $i_{\rm K}$, решение такой системы можно получить в виде формул:

$$I_{cp} = \frac{(i_1 + i_5) + 2(i_2 + i_4)}{6};$$

$$I_{m1} = \frac{(i_1 - i_5) + (i_2 - i_4)}{3};$$

$$I_{m2} = \frac{(i_1 + i_5) - 2i_3}{4} = \frac{(i_1 + i_5)/2 - i_3}{2};$$

$$I_{m3} = \frac{(i_1 - i_5) - 2(i_2 - i_4)}{6} = \frac{I_{m1} - (i_2 - i_4)}{2};$$

$$I_{m4} = \frac{(i_1 + i_5) - 4(i_2 + i_4) + 6i_3}{12} = I_{m2} - I_{cp} + i_3.$$

Три последние формулы преобразованы так, чтобы сократилось число шагов программы БП18 [2], по которой вычисляются $I_{\rm cp},\ I_{mi}...I_{mi}$ и коэффициент гармоник

$$k_{\mathbf{r}} = \sqrt{I_{m2}^2 + I_{m3}^2 + I_{m4}^2} / I_{m1}$$
.

Для трансформаторного усилителя мощности низкой частоты на транзисторе КТ807 (рис. 5.7, а) и построенной обычным способом (использованием графически заданного справочного семейства характеристик) передаточной характеристики (рис. 5.7, б) расчет дает $k_{\rm F}=6,351793\cdot 10^{-2}$, или $k_{\rm F}\approx 6,35\%$; $I_{\rm CP}=0,2866666$ A; $I_{\rm m1}=0,2433333$ A; $I_{\rm m3}=-1,5\cdot 10^{-2}$ A; $I_{\rm m3}=-3,333335\cdot 10^{-3}$ A; $I_{\rm m4}=-1,66666\cdot 10^{-3}$ A. Эти вычисления выполняются и с помощью программы ПП12/34.

5.5. РАСЧЕТ ЭНЕРГЕТИЧЕСКИХ ПАРАМЕТРОВ

Энергетическими нараметрами характеризуются сигналы и различные устройства (усилители мощности, генераторы и т. \vec{n}_i), генерирующие или усиливаю шне эти сигналы. Энергетическими параметрами сложных сигналов (например, импульсов) являются их волы-секундные и вольт-амперные площади. Так, ссли в интервале времени от начального t_n до конечного t_n сложное напряжение меняется по закону u (t), то вольт-секундная площадь определяется как

$$S_U = \int_{t_{\rm H}}^{t_{\rm E}} u(t) dt.$$

Эффективное значение периодически повторяющегося сигнала

$$U_{0\Phi} = \sqrt{\frac{1}{T_1} \int_{0}^{T_1} [u(t)]^2 dt} \cdot$$
 (5.18)

Для расчета данных параметров непосредственно пригодны программы численного интегрирования (§ 2.4), дополненные делением на T_1 и извлечением корня в (5.18). Выбор конкретной программы определяется сложностью подынтегральной функции, свободными регистрами памяти и шагами программы микрокалькуляторов.

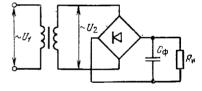
Энергетические параметры радноэлектронных устройств определяются по результатам спектрального анализа их выходных сигналов или временной зависимости выходного тока активного прибора. Например, для однотактного резонансного каскада (усилителя мощности

или умножителя частоты), используя коэффициенты Берга, можно найти выходную P_n и потребляемую P_0 мощности и КПД η на n-й гармонике:

$$P_n = (\alpha_n I_M)^2 / 2R_H';$$

 $P_0 = \alpha_0 I_M E_C; \ \eta = P_n / P_0,$

где R'_{i} — сопротивление нагрузки, пересчитанное в выходную цепь активного прибора.



Puc. 5.8 Двухфазный мостовой выпрямитель

Так, для схемы на рис. 5.5, б при $I_M=0.28$ А; $\theta=72.54^\circ$; α_0 (θ) = 0.261; α_1 (θ) = 0.446 (рассчитывается по программе БП17) получим $P_0=1.971$ Вг; $P_1=0.781$ Вт и $\eta=0.396$ (n=1).

Пля усилителя низкой частоты (рис. 5.7, а) $P_1 = I_{m1}^2/2R_{h}^{\prime}$; $P_0 = I_{cp}E_{C}$; $\eta = P_1/P_0$. В приведенном в § 5.4 примере $R_{H}^{\prime} = 30$ Ом; $I_{cp} = 0.287$ А: $I_{m1} = 0.243$ А и $E_{K} = 9$ В. Следовательно, $P_1 = 0.886$ Вт: $P_0 = 2.583$ Вт и $\eta = 0.343$.

В выпрямителях угол отсечки θ зависит от уровня выходного напряжения. Например, для m-фазной схемы выпрямителя (на рис. 5.8 ноказана двухфазная мостовая схема) со сглаживающим конденсатором угол отсечки θ находится из решения трансцендентного уравнения [39]

$$tg \theta - \theta = A = \pi r/mR_{\theta}, \qquad (5.19)$$

где r — внутреннее сопротивление открытых вентилей и вторичной обмотки трансформатора

Определив коэффициенты:

$$K(\theta) = \sin \theta - \theta \cos \theta;$$
 (5.20)

$$F(\theta) = \pi (1 - \cos \theta) / K(\theta); \qquad (5.21)$$

$$B(\theta) = 0.707/\cos \theta \qquad (5.22)$$

$$D(\theta) = \sqrt{\pi \left[\frac{1}{10} (1 + \cos \frac{2\theta}{2}) - 3 \sin \frac{2\theta}{4} \right]} / K(\theta), \qquad (5.23)$$

при заданном выходном напряжении $U_{\mathbf{0}}$ можно найти нужное напряжение на вторичной обмотке трансформатора

$$U_2 = U_0 B(\theta); \tag{5.24}$$

пиковое значение тока вентиля

$$I_{\rm Bm} = I_0 F(0)/m; (5.25)$$

лействующее значение тока вентиля

$$I_{\rm p} = D (\theta) I_0 / m; \tag{5.26}$$

ток вторичной обмотки

$$I_0 = \sqrt{2}I_0 = 1.41I_0 \tag{5.27}$$

и коэффициент пульсаний

$$k_{\pi,R} = (1/m + \theta/\pi)/(2/CR_H),$$
 (5.28)

Расчет по формулам (5.20)—(5.22) обеспечивает пакет из двух сопряженных программ БП19. С помощью первой решается транспендентное уравнение (5.19) методом поразрядного приближения и вычисляются $\theta=P2$; $\sin\theta=P5$; $\cos\theta=P6$; $K(\theta)=P7$; $1/B(\theta)$ и $F(\theta)$. По совмещенной с ней второй программе вычисляются $D(\theta)$ и $k_{\rm B}$. Совместив эти вычисления с элементарными расчетами по (5.23)—(5.27), можно рассчитать выпрямитель по его заданному выходному напряжению U_0 и току $I_0=U_0/R_{\rm H}$.

Проиллюстрируем вычислення по этим программам на конкретном примере. Пусть требуется рассчитать параметры выпрямителя при $U_0=150~{\rm B}$ и $I_0=0.15~{\rm A}$, т. е. $R_{\rm H}=U_0/I_0=1000~{\rm CM}$. Выбираем диоды Д226 В с $U_{\rm 06p}=300~{\rm B}>1.3\,U_0=195~{\rm B}$ и примерно подходящим средним током. Сопротивление этих диодов $2r_{\rm B}=20~{\rm CM}$. Считая сопротивление вторичной обмотки трансформатора $r_{\rm Tp}=80~{\rm CM}$, принимаем $r=(r_{\rm Tp}+2r_{\rm B})=100~{\rm CM}$. Расчет по (5.19) дает A=0.1570796.

По первой программе БП19, ввеля $A=P8; \theta (0)=0, \Delta\theta=0,1$ и $\epsilon=0,001,$ найдем $\theta=0,71875=P2,$ 1/B (0)=1,064378, т. е. $B (\theta)=0,9395153;$ $K (\theta)=0,1174920=P7$ и $F (\theta)=6,614386.$ Введя вторую программу БП19 сез выключения микрокалькулятора, найдем $D (\theta)=2,296037.$ Для расчета $k_{\rm H.B}$ введем новые данные: m=2=P3: f=50 Гц $=P4; C=50\cdot 10^{-6}$ $\Phi=P5$ и $R_{\rm H}=1000$ Ом =P6. Нажав клавишу С/П, получим $k_{\rm H.B}=0,1457570.$ По формулам (5.24)—(5.27) находим $U_2=140,9272$ В; $I_{\rm B}m=0,4960789$ А; $I_{\rm B}=0,1722027$ А и $I_2=0,2428059.$ Потребляемая от трансформатора мощность $P_{\rm HOTp}=U_2I_2=34,21795$ Вт; мощность в нагрузке $P_{\rm H}=22,5$ Вт. КПД выпрямителя $\eta=P_{\rm H}/P_{\rm HOTp}=0,6575495.$ Сравнение $I_{\rm B}$ с предельно допустимым значением $I_{\rm B.MBIC}=0,3$ А показывает, что диоды выбраны правильно. Для уменьнения пульсаций на выходе выпрямителя можно предусмотреть сглаживающий фильтр.

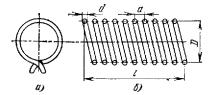
ГЛАВА 6

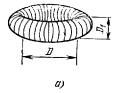
РАСЧЕТ ПАССИВНЫХ ЭЛЕМЕНТОВ НЕЛИНЕЙНЫХ И ИМПУЛЬСНЫХ УСТРОЙСТВ

6.1. РАСЧЕТ ИНДУКТИВНОСТЕЙ

Индуктивные катушки являются важными компонентами радиоэлектронных цепей. Они отличаются разнообразием конструкций (рис. 6.1-6.6). Индуктивность L катушек или электрических цепей зависит от их конфигурации, геометрических размеров, наличия внутри их или около них ферромагнитных материалов.

В справочной литературе [40] приводятся формулы для индуктивности L применяемых на практике конструкций катушек. Однако обычно нужно выбрать определенный конструктивный параметр катушек x (чаще всего число витков





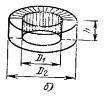


Рис. 6.2. Тороидальные катушки круглого (а) и прямоугольчого (б) сечений

 $oldsymbol{w}$) при заданных L и других конструктивных параметрах. В дальнейшем величина L будет задаваться в наногенри, а геометрические размеры катушек — в сантиметрах.

Индуктивность витка в свободном пространсаве (рис. 6.1, а)

$$L = 4.6 (\ln l/d) / (\ln 10) - k \approx 2 \ln (l/d) - k,$$
 (6.1)

так как $4.6/\ln 10 = 1.99754 = 2$. Длина провода $l_{\rm H}$ диаметром d определяет диаметр витка

 $D = de^{(L+k)/2}/\pi$

Простота формул (6.1), (6.2) делает целесообразным расчет по ним в ручном режиме счета. Константа k=2,1 для круглого витка. Например, для L=7 нГн при d=0,1 см расчет дает D=3,012242 см. Для витков другой формы удобно находить длину провода $l_{\Pi}=d\mathrm{e}^{(L+k)/2}$, причем k=3,6 для витка в виде равнобедренного треугольника, 2,9 для квадрата и 2,5 для правильного шестиугольника

Индуктивность однослойной цилиндрической катушки (рис. 6.1, б) рассчитывается по формуле

$$L = \frac{(\pi w D)^2}{l + 0.45D} + wD\left(\frac{3.5a}{d} - 4\right), \tag{6.3}$$

где D — диаметр (между центрами витков); a — шаг намотки: t — длина катушки.

Для этой катушки определение w по заданной L представляет трудности. Отметим, что при изменении w и заданной длине l меняется шаг намотки a== l/w. При этом L становится сложной нелинейной функцией от w и определение w по заданной L приводит к весьма громоздкому уравнению.

Для вычисления некоторого параметра х, сложной функцией от которого является индуктивность L(x), целесообразно воспользоваться численными методами решения пелинейных уравнений. Если L_0 — заданное значение индуктивности, то x находится из решения уравнения $F(x) = L_0 - L(x) = 0$. В данном случае w=x и при t= const для катушки на рис. 6.1, δ

$$F(w) = L_0 - \frac{(\pi w D)^2}{l + 0.45D} - wD\left(\frac{3.5l}{wd} - 4\right) = 0.$$
 (6.4)

Решение (6.4) методом подекадного приближения обеспечивает программа БП20. При ω (0) = 0; $\Delta \omega$ $_1$ = 10; D=l=2 см; 3.5l/d=140 (d=0.05 см) и $L_0=5\cdot 10^3$ нГн получим (нажав 3 раза клавишу С/П) $\omega=18.9$. Для катушек на рис. 6.1, δ с сечением в виде n-стороннего многоугольника

B (6.3), (6.4)

 $D = D_0 \cos^2 (\pi/2n),$

где \underline{D}_0 — диаметр описанной окружности.

Приведенные в [40] формулы для L можно разрешить относительно числа витков w:

1) для однослойной тороидальной катушки круглого сечения драс. о.2, и) с плотной намоткой

$$w = V L/(2\pi (D - V \overline{D^2 - D_1^2}));$$

2) для однослойной тороидальной катушки прямоугольного сечения (рис. 6.2, б) с плотной намоткой

$$w = \sqrt{L/(2h \ln (D_2/D_1))};$$

3) для многослойной тороидальной катушки круглого сечения (рис. 6.2, а)

$$w = \sqrt{L/(2\pi D (\ln (8D/D_1) - 1.75))}$$

4) для короткой цилиндрической многослойной катушки (рис. 6.3)

$$w = \sqrt{L (3D + 9l + 10c)/(25\pi D^2)}.$$

Расчет w для этих катушек реализует пакет программ БП21. Подобные выражения можно получить и для катушек с ферромагнитными сердечниками, Так, для катушки иа кольцевом сердечнике

$$w = \sqrt{L (d_{\rm H} + d_{\rm B})/4\mu h (d_{\rm H} - d_{\rm B})}$$
 при $d_{\rm H}/d_{\rm B} < (1,5...2);$ (6.5)

$$w = \sqrt{L/2\mu h \ln{(d_{\rm H}/d_{\rm B})}}$$
 при $d_{\rm H}/d_{\rm B} > (1,5...2)$,

где $d_{\rm H},~d_{\rm B}$ — наружный и внутренний диаметры сердечника; h— высота его; μ — отпосительная магнитная проницаемость.

Расчет по формулам (6.5) выполняется с помощью программы БП22.

Для катушки на броневом сердечнике (рис. 6.4)

$$w = \sqrt{L \left[h_m \left(\frac{1}{F_a} + \frac{1}{F_i} \right) + \frac{1}{\pi d} \ln \frac{v}{u} \right] / (\mu \mu_0)}, \tag{6.6}$$

где $h_m=(h_1+h_2)/2;\; d=(h_2-h_1)/2;\; F_i=\pi\; (d_2^2-d_1^2)/4;\; F_a=\pi\; (d_4^2-d_3^2)/4;\; u=(d_1+d_2)/4;\; v=(d_3+d_4)/4;\; \mu_0=4\pi\cdot 10^{-9}\;$ Гн/см — магнитная проницаемость вакуума; L — индуктивность, Гн.

Обозначив

$$A(h_1+h_2)\left(\frac{1}{d_4^2-d_3^2}+\frac{1}{d_2^2-d_1^2}\right); B=\frac{1}{h_2-h_1}\ln\left(\frac{d_3+d_4}{d_1+d_2}\right),$$

можно (6.6) представить в виде, где L выражена в наногенри:

$$w = \sqrt{L(A + B)/(19.74 \mu)}$$

С помощью совмещенных программ БП23 рассчитывается w катушки на броневом сердечнике. По программе 1 вычисляются A и B, по программе 2 — числовитков w.

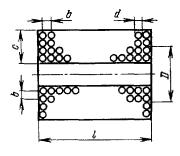
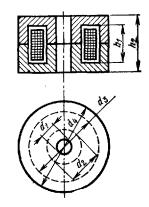


Рис. 6.3. Короткая цилиндрическая катушка

Рис. 6.4. Қатушка в бро- → невом сердечнике



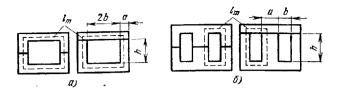


Рис. 6.5. Сердечники П- (а) и Ш (б)-образной формы

Индуктивность катушек с замкнутым сердечником (рис. 6.5) без зазора

$$L = 4\pi\mu\omega^2 F_c/l_m,\tag{6.7}$$

где $F_{\rm c}$ — площадь поперечного сечения сердечника; l_m — средняя длива магнитной линии. При введении зазора L (6.7) надо умножить на коэффициент

$$k_l = [1 + \mu d_l / (al_m)]^{-1},$$
 (6.8)

где α — ширина рабочей части сердечника; d_l — зазор. Объединив (6.7) и (6.8), получим

$$w = \sqrt{L l_m \left(1 + \mu d_l / a l_m\right) / (4 \pi \mu F_c)}.$$

Расчет k_l и w производится по программе БП24.

В интегральных микросхемах применяются тонкопленочные катушки (рис. 6.6), для которых

$$L = k_1 (A_H + A_B) w^{5/3} \ln (k_2 (A_H + A_B) / (A_H - A_B)), \tag{6.9}$$

откуда

$$w = \{L/[k_1(A_H + A_B) \ln (k_2(A_H + A_B)/(A_H - A_B))]\}^{3/5}.$$
 (6.10)

Коэффициенты $k_1=2.33$ и $k_2=4$ для круглой (рис. 6.6, a) и $k_1=12.05$ и $k_2=8$ для квадратной (рис. 6.6, a) катушек. Расчет a0 выполняется по программе БП25.

Расчет по формуле (6.10) дает требуемое значение w при заданных L и размерах A_{Π} и A_{B} катушки. Однако в практике разработки пленочных микросхем часто нужно получать заданные L при минимальных размерах катушки. Обычно в этом случае задаются внутренним размером A_{B} и шагом спирали l исходя из технологических возможностей и пужной добротности катушки. Тогда A_{H} становится функцией числа витков: $A_{H} = A_{B} + wl$. Подставляя A_{H} в (6.9), получаем нелинейное уравнение вида L (w), аналитически не разрешимое относительно w. Однако, как было показано выше, значение w можно получить, решая численными методами уравнение $L_{0} - L$ (w) = 0, где $L_{0} -$ заданная индуктивность. Это уравнение в данном случае имеет вид

$$F(w) = L_0 - k_1 \left(1 + \frac{2A_B}{wl} \right) lw^{8/3} \ln \left[k_2 \left(1 + \frac{2A_B}{wl} \right) \right] = 0.$$
 (6.11)

Решение (6.11) обеспечивает программа БП26, в которой реализуется метод подекадного приближения. При ω (0) = 0; $\Delta \omega_1 = 1$; $A_B = 0.2$ см; l = 0.05 см;

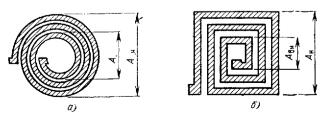


Рис. 6 6. Тонкопленочные индуктивные катушки круглой (а) и квадратной (б) формы

 $L_0 = 100$ нГн получим w = 7,14 для круглой катушки. Отметим, что значение $k_2 = 4$ вписано в программу. При расчете $oldsymbol{w}$ для квадратной катушки надо взять

другие коэффициенты: $k_1=12,05$ и $k_2=8$. Для импульсных устройств, в которых индуктивные элементы используются в основном как корректирующие, знать точное значение добротности Q катушки не требуется. Расчет потерь в катушках и Q на высоких частотах можно найти в литературе [40].

6.2. РАСЧЕТ ДРОССЕЛЯ ФИЛЬТРА

Дроссели фильтров выпрямителей должны обеспечивать заданную индуктивность $L_{\pi p}$ при постоянной составляющей тока нагрузки I_0 . Методика расчета дросселя фильтра на П. или Ш-образном сердечнике описана в [39]. Порядок расчета следующий:

1. По заданным $L_{\rm дp}$ и I_0 определяем ширину стержия $a=2.6\sqrt[4]{L_{\rm дp}I_0^2}$ и сечение

сердечника (стального) $Q_{\rm CT}=1.5~a^2.$

2. Выбираем стандартный сердечник со значением а, большим полученного, и расчетным $Q_{
m cr}$ (или чуть большим). Выбранный сердечник характеризуется уточненными параметрами: Q_{CT} , шириной окна b, высотой окна h и длиной магнитной ливии l_m . В дальнейших расчетах используем эти параметры сердечника.

3. Определяем толщину набора пластин сердечника $c = Q_{\rm cr}/a$.

- 4. Находим вспомогательный коэффициент $M=L_{\pi p}I_0^2/(acl_m)$. 5. Находим оптимальную длину воздушиого зазора $l_z/2$ и значение эффективной магнитной проницаемости μ_z . Обычно они заданы графически [39]. Однако, используя нелинейную аппроксимацию функций с минимизацией погрешности по методу наименьших квадратов (см. § 9.5), зависимость $l_{2\%}$ (в процентах от l_m) можно аппроксимировать параболой: $l_{z^{0}/\!\!\!/}=330\,M\,-\,15\,\cdot\,10^3\,M^2$, а μ_z экспонентой: μ_z = $114\mathrm{e}^{-401M}$ + 50. Погрешность вычисления $l_{z\%}$ и μ_z по этим форму• лам не превышает 2-5%, т. е. не больше той, которую можно получить, определяя эти параметры непосредственно по графикам. Используя данные формулы, можно отказаться от использования графиков, которые не всегда находятся под рукой.
- 6. Находим длину зазора (толщину немагнитной прокладки)

$$l_z/2 = 0.05 l_{z_0/k} l_m = l_{z_0/k} l_m/20$$
.

- 7. Задавшись допустимой плотностью тока δ , находим диаметр провода d = $= 1.13 \sqrt{I_0/\delta}$
- 8. Определяем число витков дросселя $w_{\rm пр} = 10^4 \, V \overline{L_{\rm дp} l_m / 1,26 \mu_z ac}$.

9. Находим коэффициент заполнения окна сердечника медыо

гистра 7, а значение $M=1.859248\cdot 10^{-3}$ —из регистра 8.

$$k_{\rm M} = 8 \cdot 10^{-3} w_{\rm HD} d^2 / (bh).$$

10. Определяем сопротивление обмотки дросселя по постоянному току 🔭 🖚

 $= 2.25 \cdot 10^{-4} w_{\rm np} \left[2 \left(a + c \right) + \pi b \right] / d^2.$

Расчет параметров дросселя фильтра на микрокалькуляторе «Электроника Б3-21» реализуется пакетом из трех совмещенных программ БП27. Порядок расчета и используемые размерности величин рассмотрим на конкретном примере для дросселя с индуктивностью $L_{
m np}=3\cdot 10^{-4}$ Гн и рабочим током $I_0=$ = 15 A.

Вводим программу 1, заносим $L_{\pi p}=3\cdot 10^{-4}$ Гн = P2; $I_0=15$ А = P3. Нажимая клавишу С/П, получаем $Q_{\rm cr}=2,634449$ см². В регистр 4 программой заносится значение a. Нажимая клавиши F и 4, считываем a=1,325254 см. По нормали H0.666.002 («Магнитопроводы ленточные») выбираем броневой ленточный сердечник с шириной стержня a=1,6 см (ППЛ 16×16), шириной окна b== 1,6 см, высотой окна h= 4 см и средней длиной магнитной линии $l_{m m}=$ = 13,7 см. Вводим уточпенные исходные данные: a=1,6 см = P4; $l_m=13,7$ см = P5; $Q_{\rm CT}=2$,65 см² = РХ. Нажимая клавишу С/П, получаем $l_z/2=3,847643\cdot 10^{-1}$ мм, значение c=1,65625 см $\approx 1,6$ см вызываем из ре-

Не выключая микрокалькулятор, вводим программу 2. Набираем значение $\delta = 3 \text{ A/мм}^2 = \text{PX}$. Нажимая клавишу С/П, получаем d = 2,526756 мм. Еще

раз нажимая клавишу С/П, получаем шпр = 34,38818.

Не выключая микрокалькулятор, вводим программу 8. Заносим уточненные (округленные) данные: $\omega_{\Pi p}=35=P2;~d=2,5$ мм = P3; b=1,6 см = P5 и h=4 см = P6. Нажав клавишу С/П, получим $k_{\rm M}=2,734374\cdot 10^{-1}$. Еще раз нажимая клавишу С/П, получаем $r_{\Pi p}=1,45392\cdot 10^{-2}$ Ом.

63 РАСЧЕТ СИЛОВОГО ТРАНСФОРМАТОРА

Силовой трансформатор рассчитывается при следующих исходиых данных: габаритиая мощиость траисформатора $P_{\text{габ}}$, максимальная индукция в сердечнике B_m , частота сети f, число стержией сердечника с обмотками s, допустимая плотность тока δ , коэффициент заполнения сердечника сталью k_0 , коэффициент заполнения окна медью $k_{\rm M}$, КПД трансформатора $\eta_{
m TD}$, напряжения $U_{
m I}$ и $U_{
m B}$

и токи I_1 и I_2 обмоток. Последовательность расчета следующая [39]: 1. Находим произведение сечений стали сердечника $Q_{\rm ot}$ и окиа Q_0 $Q_{\rm cr}Q_0$ = $P_{\rm ra6}/(0.0222 f B_m \delta \eta_{\rm Tp} s k_c k_{\rm M})$. Выбираем подходящий тип сердечника (магинтопровода) и уточняем значения $Q_{\text{от}}$ и Q_{0} .

2. Определяем ЭДС одного витка $e = 4,44 / B_m Q_{cr} k_c \cdot 10^{-4}$.

3. Находим число витков вторичной обмотки $w_2=U_s/e$. 4. Находим приближенное число витков первичной обмотки $w_i = U_i/e$.

 Определяем диаметр провода вторичной обмотки (без изоляции) d. == $= 1.13 \sqrt{I_2/\delta}$

6. Определяем диаметр провода первичной обмотки трансформатора $d_1 =$

= 1.13 $\sqrt{I_1/\delta}$.

7. Находим длину провода первичной обмотки $l_1 = w_1 \left[2 \left(a + c \right) + \pi b \right] \cdot 10^{-3}$. где а — ширина стержня сердечника; b — ширина окна; с — толщина набора пластии сердечника.

Таблица 6.1

Порядок расчета силового трансформатора

Вво д ясходных данных	Порядок нажатня клавиц	Вывод результата	
В регистры 2—8 согласно БП28 $Q_{cr} = P7$	Ввод программы БП28, Р РР В/О 50 † 1,2 × Р2 2 Р3 2 Р4 0,95 Р5 0,96 † 0,32 × Р6 215 Р7 0,0222 Р8 С/П 2,5 † 5 × Р7 4,44 ВП 4 /—/ Р8 С/П	$Q_{0} = Q_{0} = 138,2704 \text{ cM}^{4}$ $e = 3,1636 \cdot 10^{-1} \text{ B}$	
$4,44 \cdot 10^{-4} = P8$ $w_1/100 = P5$	127 ↑ F7 ÷ 100 ÷ P5	w ₁ =401,4540 внт- ка	
$U_2 = PX$	450 ↑ F7 ÷	$w_2 = 1422,475$ вит-	
$I_2 = P6 1.13 = P8$	0,475 P6 1,13 P8 C/Π	$d_2 = 5,506938 \times \\ \times 10^{-1} \text{ MM}$	
$I_1 = P6$ $d_1 = P2, 2(a+c) = P3,$ $\pi b = P4, 0.0225 = P6$	1,7 P6 БΠ 5 C/Π Fx ² P2 2,5 ↑ 5 + ↑ 2 × P3 Pπ 2 × P4 0,0225 P8 C/Π	$d_1 = 1,041808 \text{ MM}$ $l_1 = 85,44221 \text{ M}$	
=-P8 	C/Π /—/ 127 + ↑ F7 ÷	ΔU_1 =3,011120 В w_1 =391,9357 вит-ка	

первичной обмотке $\Delta U_1 =$ напряжения в Рассчитываем падение $= 2.25 \cdot 10^{-2} I_1 I_1 / d_1^2$

9. Уточняем число витков первичной обмотки $w_1 = (U_1 - \Delta U_1)/l$. Этот расчет реализуется одной программой БП28 при условии, что часть элементарных вычислений проводится вручную. Порядок расчета дан в табл. 6.1. Там же даны контрольные результаты расчета трансформатора, имеюнаси. О.1. там же даны контрольные результаты расчета трансформатора, имеющего следующие исходные данные: $P_{\rm TAG}=215$ Br; $B_m=1,2$ Tл; s=2; $\delta=2$ A/m 2 ; $k_{\rm C}=0,95$; $k_{\rm M}=0,32$; $\eta_{\rm TP}=0,96$. Так как $Q_{\rm CT}Q_0=140$ см 4 , то выбираем подходящий ленточный магнитопровод ПЛ $25\times50=65$ (a=2,5 см; b=2 см; c=5 см) с $Q_{\rm CT}Q_0=162$ см 4 . При дальнейшем расчете использованы значения нсходных параметров $Q_{\rm CT}=2,5\times5$ см 2 ; $U_1=127$ B; $U_2=450$ B; $I_1=1,7$ A и $I_2=0,475$ A.

6.4. РАСЧЕТ ЕМКОСТЕЙ

В отличие от индуктивных элементов, коиструкции которых нередко нестандартны, конденсаторы являются обычно стандартными компонентами электронных схем и их емкости разработчики схем не рассчитывают. Исключение составляет расчет емкости пленочных копденсаторов (например, пленочных схем) и емкости проводников в свободном пространстве. Последний необходим и для оценки паразитных емкостей монтажа.

Пленочные конденсаторы (рис. 6.7) рассчитываются в следующем порядке: -1. Вычисляется удельная емкость (на 1 см²) $C_0 = 0.0885 \epsilon \ (m-1)/d$, где ϵ — тносительная диэлектрическая проницаемость диэлектрика; т — число обкладок; d — толщина диэлектрика.

2. Находится площадь обкладок $S=C/C_0$, где C — требуемая емкость конден-

сатора.

3. Определяются размеры сторон обкладок $A=\sqrt{QS}$ и $B=\sqrt{S/Q}$, где Q==A/B — требуемое отношение A к B. Этот расчет выполняется по программе

Расчет емкости проводников в свободном пространстве выполняется по формуле [40]

$$C = k_1 \varepsilon l \ln 10 / \ln (k_2 x/d)$$
 (6.12)

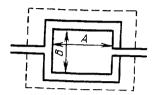
с помощью программы 2 пакета БП29. В табл. 6.2 даны значения коэффициентов k_1 и k_2 , а также расшифровка параметра x.

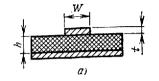
Таблипа 6.2 Значения k_1 , k_2 и смысл коэффициента x в формуле (6.12)

Элементы, определяющие емкость		k ₂	x		
Два провода вдали от земли	0,12	2	Расстояние между про-		
Горизоптальный провод и земля	0,24	4	Высота подвески		
Всртикальный провод и земля при расстоянии от земли до нижнего конца $h > l/4$	0,24	1	Длина провода		
To же при $h < l/4$	0,24	1,15	Длина провода		
Провод и корпус при вводе провода через отверстие	0,24	2	Диаметр отверстия		

6.5. РАСЧЕТ ЛИНИЙ ПЕРЕДАЧИ. ЛИНИЙ ЗАДЕРЖКИ И РЕАКТИВНЫХ ФОРМИРУЮЩИХ ДВУХПОЛЮСНИКОВ

В радиоэлектронных импульсных устройствах широкое применение находят линии передачи - проводные, коаксиальные, полосковые и др. Полосковые несимметричные (см. 6.8, а) и симметричные (рис. 6.8, б) линии часто используются в пленочных микросхемах, а также в аппаратуре, построенной на основе печатного монтажа. Основными параметрами линий передачи являются их входное сопротивление $Z_{\rm d}$, фазовая скорость распространения волны v и (для относительно длинных линий) потери на единицу геометрической длины.





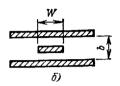


Рис. 6.7. Пленочный конден-

Рис. 6.8. Полосковые линии — несимметричная (а) и симметричиая (б)

В справочной литературе обычно приводятся формулы для Z_n и v, выраженных через конструктивные параметры линий [40]. Однако на практике бывает необходимо проектировать линию с заданным Z_n , изменяемым одним из конструктивных параметров х, при заданных других параметрах. Для ряда линий Z_n выражается через параметр x=D/d с помощью простых формул:

$$Z_{n} = \frac{60}{\sqrt{\varepsilon}} \ln \left(k \frac{D}{d} \right)$$

И

$$x = \frac{D}{d} = \frac{\exp(Z_{\rm T} \sqrt{\varepsilon/60})}{k},$$

где arepsilon — относительная диэлектрическая проницаемость диэлектрика; d — диаметр внутреннего проводника; k — константа, зависящая от типа линии. Расшифровка D и значение к для таких линий следующие:

1) линия в виде круглого проводника, помещенного в середине между проводящими влоскостями, находящимися друг от друга на расстоянии D (k=1,27); 2) линия в виде круглого проводника, помещенного в экран с квадратным сечением и стороной последнего D (k=1,08);

3) линия в виде круглого проводника, помещенного в экран круглого сечения

(коаксиальная линия) диаметром D (h = 1);

4) линия в виде круглого проводника, расположенного на биссектрисе прямого угла, образованного двумя полубесконечными проводящими плоскостями, на

равном расстоянии D/2 от каждой (k = 1,4).

Расчет по этим формулам довольно прост, и его целесообразно выполнять в режиме ручных вычислений (без использования программ). Для несимметричной полосковой линии (рис. 6.8, α) формулу для Z_π можно представить в виде, при котором ширина полоски W определяется через заданные Z_π и другие параметры линии [41]:

$$W = 1,25 \left[\frac{5,98h}{\exp\left[Z_{\pi} \left(\epsilon + 1,41 \right)^{1/2} / 87 \right]} - t \right]$$
 (6.13)

При этом для такой линии

$$v/c = 1/[(0.4758 + 0.67)^{1/2}],$$
 (6.14)

где c - скорость света.

для симметричнои линии:

$$W = 0.59 \left[\frac{4b}{\exp(Z_n \sqrt{\epsilon/60})} - 2.1t \right]; \tag{6.15}$$

$$v/c = 1/\sqrt{\varepsilon}. (6.16)$$

Программы 1 и 2 пакета БПЗО позволяют рассчитать W и v/c полосковых линий непосредственно по формулам (6.13)—(6.16). Отметим, что время задержки для линий длиной l составляет $t_3 = vl$.

Полосковые линии применяются в качестве линий задержки при малом времени задержки (до 20—30 нс). При больших длительностях часто используются искусственные линии. В простейшем случае такие линии состоят из звень-

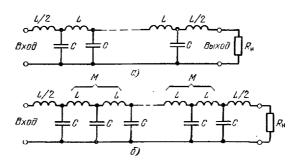


Рис. 6.9. Звенья искусственных линий К- (а) и М (б)-типов

ев (рис, 6.9) LC-фильтров нижних частот типа K [42, 43]. Время задержки и длительность фронта одного звена рассчитывают по формулам $t_{31}=1,07\sqrt{LC}$: $t_{\Phi 1}=1,13\sqrt{LC}$. Линия со звеньями K-типа имеет липейную фазовую характеристику и относительное постоянство характеристического сопротивления в узкой полосе частот $\omega \leqslant (0,2\dots 0,3)\omega_{\rm C}$, где $\omega_{\rm C}=1/\sqrt{LC}$. Лучшими характеристиками обладают линии со звеньями M-типа, между смежными индуктивными элементами которых имеется магиитная связь (коэффициент взаимоиндукции M). В таких линиях при M=1,27

$$t_{31} = 1.2 \sqrt{LC}, \ t_{\oplus 1} = 1.15 \sqrt{LC}.$$
 (6.17)

Для линий с п звеньями

$$t_3 = nt_{31} \text{ if } t_{\oplus} = t_{\oplus 1} \sqrt[3]{n}.$$
 (6.18)

На практике представляет интерес расчет значений $n,\ C$ и L по заданным $t_{\Phi},\ t_3$ и волновому сопротивлению $Z_{\pi}=\sqrt{L/C}.$ В этом случае из выражений (6.17) и (6.18) можно получить следующие расчетные формулы:

$$n = k_1 (t_3/t_{\oplus})^{1.5};$$
 (6.19)

$$C = t_3/k_2 n Z_{\rm JI}; L = t_3 Z_{\rm JI}/k_2 n,$$
 (6.20)

где $k_1=1,1$ и $k_2=1,07$ для линий со звеньями К-типа; $k_1=0.94$ и $k_2=1,2$ для линий со звеньями М-типа при M=1,27.

При нагрузке линии со стороны входа на активное сопрозивление $R_{\mathbf{u}}$ и выхода $R_{\mathbf{u}}$ коэффициенты отражения

$$K_{0BX} = \frac{R_{II} - Z_{II}}{R_{II} + Z_{II}}; K_{0BIJX} = \frac{R_{II} - Z_{II}}{R_{II} + Z_{II}}$$
 (6.21)

Параметры искусственных линий задержки по формулам (6.19)—(6.21) рассчитываются по программе 3 пакета ПБ30. Допустим, нужно определить параметры линий K-типа с исходными ланными: $t_{\Phi} = 0.05 \cdot 10^{-6}$ с; $Z_{\pi} = 600$ Ом; $R_{\rm H} = R_{\pi} = 1000$ Ом; $t_{3} = 10^{-6}$ с. По этой программе получим n = 98.3; C = 15.57 пФ: L = 5.61 мкГн; $K_{0} = 0.25$.

Для многих типов линий выражения для Z_{n} неразрешимы или трудно разрешимы в аналитическом виде относительно требуемого конструктивного параметра x. Приведем выражения для Z_{n} некоторых из таких линий [40].

1) коаксиальная линия со смещенным на расстояние t от центра внутренним проводником:

$$Z_{II} = k \operatorname{arch} \frac{D^2 + d^2 - 4l^2}{2dD}$$
, $k = 60/\sqrt{\epsilon}$;

2) линня из двух проводников одинакового днаметра a, расположенных в свободном пространстве на расстоянии d:

$$Z_{\rm H}=k \ {\rm arch} \ x, \ k=120/\sqrt{\varepsilon}, \ x=a/d$$
:

3) линия в виде круглого проводника диаметром a, расположенного на расстоянии D/2 от проводящей плоскости:

$$Z_{\pi} = k \text{ arch } x, \ k = 60/\sqrt{e}, \ x = D/d;$$

4) линия в виде двух проводников диаметром d, расположенных на расстоянии a друг от друга и на расстоянии D от проводящей плоскости:

$$Z_{\pi} = k \left[\operatorname{arch} \frac{a}{d} - \ln \sqrt{1 + \left(\frac{a}{2D} \right)^2} \right], \ k = 120 / \sqrt{\varepsilon};$$

5) линия из двух проводников разного диаметра $(d_1 \ u \ d_2)$ на расстояние a друг от друга и расположенных в свободном пространстве:

$$Z_{\pi} = k \operatorname{arch} \frac{4a^2 - d_1^2 - d_2^2}{2d_1 d_2}$$
, $k = 60/\sqrt{\epsilon}$;

 линия коаксиальная с внутренним проводником, выполненным в виде намотанной спиралью ленты:

$$Z_{\rm II} = Z_{\rm IIR} F_{\rm W}, F_{\rm W} = \sqrt{1 + \frac{(\pi n d)^2}{2 \ln (D/d)} \left[1 - \left(\frac{d}{D} \right)^2 \right]},$$

где n — число витков спирали на 1 см длины (эта линия характеризуется большим $Z_{\rm H}$ и малой $v=v_{\rm R}/F_{\rm W};~Z_{\rm JK}$ — сопротивление коаксиальной линии с обычным круглым проводпиком такого же диаметра $d;~v_{\rm R}$ — фазовая скорость обычной коаксиальной линии.

Для линий указанных (и ряда других) типов требуемый параметр x при заданиом волновом сопротивлении Z_{00} может рассчитываться численным методом поразрядного приближения (или другим методом, обеспечивающим сходимость). Для этого волновое сопротивление представляется нелинейной функцией параметра x, т. е. $Z_{\pi}(x)$, и решается уравнение $F(x) = Z_{\pi0} - Z_{\pi}(x) = 0$. В пакете программ БПЗ1 даны фрагменты программ вычисления функций

В пакете программ ВПЗ1 даны фрагменты программ вычисления функций F(x) для линий перечисленных типов. Для вычисления соответствующего параметра x достаточно вписать нужный фрагмент в программу, реализующую метод подекадиого приближения (см. § 2.3) с полуавтоматической выдачей результата (кождое нажатие клавиши С/П ведет к выдаче очередной десятичной цифры ревультата x). При трех-четырех цифрах результата время расчета составляет 1,5-2,5 мин. В программах используется известное выражение arch y = 1 ($y + \sqrt{y^2 + 1}$). Применение описанного метода избавляет разработчика от использования многочисленных графиков [40], по которым нужные параметры определяются с большой погрешностью (примерно до 5%), и повышает точность расчетов. Исключив из фрагментов программ пакета БПЗ1 операцию по-

лучения разности \mathcal{L}_{n_0} и \mathcal{L}_n (x) и добавне команду остановки С/П, с помощью этих программ можно непосредственно вычислить \mathcal{L}_n , занося параметр x (теперь

уже как заданный) в регистр 2.

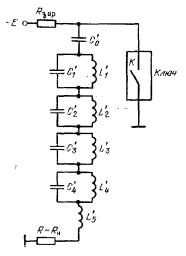
Часто возникает задача определения модуля коэффициента отражения $|K_0|$, фазового сдвига ϕ и входного сопротивления $Z_{\rm BX}$ однородной линии передачи с потерями, нагруженной на комплексное сопротивление $Z_{\rm H}=R_{\rm H}+{\rm i}X_{\rm H}$, при известных длине линии t и параметрах ϕ (волновое число) и ϕ (коэффициенг затухания). Расчетные формулы для искомых параметров следующие:

$$|K_0| = \sqrt{\frac{(R_{\rm H} - Z_{\rm cl})^2 - X_{\rm H}^2}{(R_{\rm H} + Z_{\rm cl})^2 + X_{\rm H}^2}};$$
 (6.22)

$$\varphi = \arctan \frac{2X_{\rm H} Z_{\rm D}}{R_{\rm H}^2 + X_{\rm H}^2 - Z_{\rm D}^2};$$
 (6.23)

$$Z_{\rm BX} = Z_{\rm A} \, \frac{(1 - K_0^2 \, {\rm e}^{-4\alpha l}) - 2{\rm i} K_0 \, {\rm e}^{-2\alpha l} \sin{(2\beta l - q)}}{(1 + K_0^2 \, {\rm e}^{-4\alpha l}) - 2K_0 \, {\rm e}^{-2\alpha l} \cos{(2\beta l - q)}}.$$

Расчет по (6.22) и (6.23) реализуется программой 1 [2] пакета программ БП32, по которой вычисляются $|K_0|$ и tg φ . После пуска и выполнения программы значения $|K_0|$ и tg φ заносятся в регистры 4 и 7 соответственно, а на пидикаторе высвечиваются цифры 7, 180 или 90 в зависимости от знака числител или знаменателя выражения, определяющего tg φ . Если дробь этого выраже-



Puc. 6.10. Формирующий реактивный двухнолюсник

ния положительна, высвечивается цифра 7, указывающая, что значение tg ϕ ищется в регистре 7. Если знаменатель дроби отрицатслен, высвечивается число ∓ 180 , указывающее, что его надо добавить к значению ϕ , определенному по значению tg ϕ , взятому из регистра 7. Если знаменатель дроби равен 0, высвечивается число 90 (это значит, что $\phi = \pm 90^\circ$, причем знак определяется знаком миимой части X_0 полного сопротивления нагрузки).

причем заак определяется знаком мимом части $X_{\rm H}$ полного сопротивления нагрузки). По программе 2 [2] накета БПС2 вычисляются $|Z_{\rm Bx}|/Z_{\rm J}$, $R_{\rm Bx}/Z_{\rm J}$ и $X_{\rm Bx}/Z_{\rm J}$, причем эти данные заносятся соответствению в регистры ${\rm PX}={\rm P6}$, ${\rm P7}$ и ${\rm P8}$ (содержимое других регистров не меняется). Здесь $R_{\rm BX}$ и $X_{\rm BX}$ — активная и реактивная составляющие входного сопротивления линий с потерями при ком-

плексной нагрузке.

Параметры α и β зависят от частоты. Используя эти зависимости, приведенные в [37], можно найти зависимость составляющих $Z_{\rm BX}$ ($i\omega$) от частоты $\omega=2\pi f$. Для этого достаточно при использовании программы 5 изменять значения α и β . В |2| описана программа вычисления параметров линии на микрожалькуляторе «Электроника БЗ-34». Распре-

деление напряжения и тока вдоль линии позволяет рассчитать программа, описанная в [44].

Линии передачи и задержки нередко используются в качестве формирующих в генераторах импульсов почти прямоугольной формы. Наряду с ними применяются реактивные формирующие двухполюсники. Такие двухполюсники обычно состоят из колебательных контуров, рассчитанных так, что их колеба-иия, суммируясь, образуют почти прямоугольные импульсы. Формирующий двухполюсник подключается к нагрузке через ключ (рис. 6.10), в качестве которого используется тиристор, лавинный транзистор или другой коммутирующий прибор.

Синтез и расчет формирующих двухполюсников хорошо освещен в литературе [42]. Расчет их сводится к определению индуктивностей и емкостей звеньев двухполюсников по известным формулам. Так, для двухполюсника с пятью авеньями, скорректированными по наилучшей форме импульсов:

$$\begin{split} &C_0'=0,46t_{10}/R; \quad C_1'=0,51C_0'; \quad C_2'=0,56C_0'; \quad C_3'=0,675C_0'; \quad C_4'=1,43C_0'; \\ &L_5'=0,08Rt_{10}; \quad L_4'=0,024L_5'; \quad L_3'=0,092L_3'; \quad L_2'=0,248L_5'; \quad L_4'=1,07L_5'. \end{split}$$

Ввиду простоты этих выражений параметры звеньев можно вычислить вручную. что займет меньше времени, чем составление и ввод соответствующей программы. При $t_{\rm H0}=1$ мкс (длительность импульса при числе звеньев $s \to \infty$) и R=100 Ом расчетные значения емкостей и индуктивностей следующие: 4,6; 2,346; 2,576; 3,165; 6,578 ьФ, 8; 0,192; 0,736; 1,984 и 8,56 мкГн.

6.6. РАСЧЕТ РЕЗОНАНСНЫХ ЦЕПЕЙ УСИЛИТЕЛЕЙ **РАЛИОИМПУЛЬСОВ**

Полоса пропускания резонансных широкополосных усилителей высокой и сверхвысокой частот $2\Delta f$, измеренная на уровне усиления 0,7 от максимального, в первом приближении определяет длительность фронта радионмпульса на выходе настроенного усилителя

$$t_{\mathrm{dipH}} \simeq 2.2/(2\pi\Delta f) \simeq 0.7/(2\Delta f)$$
.

Для построения резонансных цепей усилителей радиоимпульсов применяются как отдельные колебательные контуры, так и их системы, обеспечивающие

получение более близкой к прямо-угольной формы частотной характеристики усилителей. Рассмотрим расчет последних на микрокалькуляторах.

Простейший последовательный колебательный контур (рис. 6.11, а) жарактеризуется резонансной часто- $\mathbf{Toй} f_0$ и добротностью

$$Q = \sqrt{L/C}/r = f_0 / (2\Delta f).$$

Представляет интерес расчет резонансной кривой контура

$$K_i(f) = I(f)/(E/r),$$

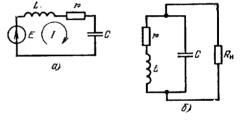


Рис. 6.11. Последовательный (а) и цараллельный (б) резонансные контуры

сдвига фаз φ между ЭДС E и током I и модуля входного сопротивления $[Z_{nx}]$. Для последовательного колебательного контура резонансная частота

$$I_0 = 1/(2\pi \sqrt{LC}).$$

У лобно рассчитывать основные параметры для ряда частот $f=f_0+\Delta f$, соответствующих обобщенным расстройкам

$$\xi = Q |f/f_0 - f_0/f|. \tag{6.24}$$

Тогда $K_l=1/\sqrt{1+\xi^2};\ r=\sqrt{L/C/Q};\ |Z_{\rm BX}|=r\sqrt{1+\xi^2}$ и ${\rm tg}\ \phi\ (\xi)=\xi.$ Эти расчеты выполняются по программе 1 пакета БПЗЗ. Цикл выдачи результатов f, ξ , K_i , r и $|Z_{\rm BX}|$ повторяется автоматически по мере формирования сетки значений f с шагом Δf (положительным или отрицательным), что позволяет строить амплитудно- и фазочастотные характеристики.

Для параллельного ненагруженного ($R_{\rm H}=\infty$) колебательного контура (рис. 6.11, 6) определяется эквивалентное активное сопротивление при резонаисе $R_9=Q\sqrt{L/C}$, причем $|Z_{\rm BX}|=R_9/\sqrt{1+\xi^3}$. Расчет выполняется по программе 2 пакета БП33.

Для расчета параметров нагруженного параллельного контура $R_{\rm H} \neq \infty$ в ваданной частотой f_0 используются следующие выражения:

$$L = 1/C (2\pi f_0)^2; \ \rho = \sqrt{L/C}; \ Q_H = \rho/(r + \rho^2/R_H);$$
$$d_H = 1/Q_H; \ 2\Delta f = f_0 d_{II}.$$

Эти параметры рассчитываются по программе 3 пакета БПЗЗ. В нем приведены также контрольные примеры расчета по программам 1—3.

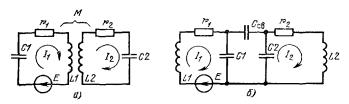


Рис. 6.12 Связанные контуры с индуктивной (а) и емкостной (б) связью

Резонансиая кривая одиночного *LC*-контура заметно отличается от прямоугольной. В этом отношении лучшие результаты дает применение связанных контуров (рис. 6.12). Коэффициент связи

$$k_{\mathrm{CB}} = rac{M}{\sqrt{L_1 \, L_2}}$$
, или $k_{\mathrm{CB}} = rac{C_{\mathrm{CB}}}{\sqrt{(C_1 + C_{\mathrm{CB}}) \, (C_2 \, + \, C_{\mathrm{CB}})}}$.

Нормированная относительно тока при резонансной частоте резонансная кривая при идентичных контурах определяется выражением [37]

$$K(f) = \frac{I_2}{I_{2p}} = \left[\frac{1 + p_{cB}^2}{\sqrt{(1 + p_{cB}^2 - \xi^2)^2 + 4\xi^2}} \right]^n,$$

где n=1 для одной пары контуров (случай n>1 соответствует расчету π каскадного усилителя с n-парами связанных контуров).

Резонансную кривую связапных контуров можно рассчитать по программе БП34. В ней значения обобщенной расстройки вычисляются по формуле

$$\xi_{n+1} = \xi_n + \Delta \xi,$$

где <u>Д</u> — шаг расстройки

Дальнейшее улучшение формы кривой избирательности достигается в усилителях, содержащих большее число резонансных контуров. Рассмотрим расчет кривой избирательности для ряда типовых усилителей радиоимпульсов. Результаты будем представлять в нормированном виде:

$$Y(f) = K(f) / K_{\text{Marc}}$$

где $K\left(f\right)$ — коэффициент усиления (передачи) на заданной частоте $f\colon K_{ ext{Makc}}$ — максимальное значение $K\left(f\right)$.

Широкое применение в усилителях радиоимпульсов пашли идентичные каскады со связанными контурами (рис. 6.13). Для таких каскадов уравиение нормированной относительно K_{Mako} кривой избирательности имеет вид [37]

$$Y(f) = \left[2p_{\rm CB}/\sqrt{(1+p_{\rm CB}^2-\xi^2)^2+4\xi^2}\right]^n, \tag{6.25}$$

где n — число пар связанных контуров (каскадов). Кривая избирательности n-каскадного усилителя с такими контурами согласно (6.24) и (6.25) может рассчитываться по программе БП35.

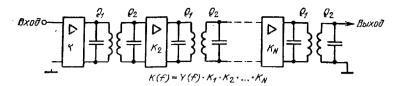


Рис. 6.13. Функциональная схема избирательного усилителя со связанными контурами

Программа БПЗ6 позволяет рассчитать кривую избирательности п-каскадного ($n\leqslant 4$) усилителя с идентичными по добротности взаимно расстроенными контурами (частоты из f_{01} , f_{02} , f_{03} и f_{04} в общем случае различны, но могут быть и одинаковыми) по формуле

$$Y(f) = \frac{1}{\sqrt{1+\xi_1^2}} \frac{1}{\sqrt{1+\xi_2^2}} \frac{1}{\sqrt{1+\xi_3^2}} \frac{1}{\sqrt{1+\xi_3^2}},$$

причем, начиная с адреса 52, оформляются вычисления члена

$$\xi_i = \{ \sqrt{1 + [Q(f/f_{0i} + f_{0i}/f)]^2} \}^{-1},$$

где $i=1\dots 4$ — номер контура (каскада). Значения Q<999 записываются непосредственно в программу по адресам 72, 73 и 74.

Усилители с взаимно расстроенными контурами могу: иметь кривую избирательности с одним или n горбами. Обычно желательно, чтобы высота горбов была одинаковой. Это условие сравнительно легко выполняется в трехкаскадном усилителе, у которого один из контуров иастроен на среднюю частоту, т. е. $f_{03}=(f_{01}+f_{02})/2$, и имеет добротность $Q_3=0.5Q_{1,2}$ ($Q_1=Q_2$). Для расчета такого усилителя можно использовать программу БП37. Рас-

чет ведется по формуле

$$Y(f) = \left\{ \sqrt{\left[1 + (Q_{1,2} \ a_1)^2\right] \left[1 + (Q_{1,2} \ a_2)^2\right] \left[1 + (Q_3 \ a_3)^2\right]} \right\}^{-1},$$

причем значения

$$a_i = (f/f_{0i} - f_{0i}/f)$$

вычисляются по подпрограмме, записанной с адреса 72.

Близкую к прямоугольной форму кривой избирательности обеспечивают усилители, в которых каскады со связанными контурами комбинируются с ка: кадом на одиночном коптуре (рис. 6.14). Уравнение резонансной кривой в этом случае имеет вил

$$Y(f) = \left[\frac{1 + k_{\text{CB}}^2 Q_1 Q_2}{\sqrt{1 + Q_1 Q_2 (k_{\text{CB}}^2 - \mathbf{v}^2)_1^2 + (Q_1 + Q_2)^2 \mathbf{v}^2}} \right]^2 \frac{1}{\sqrt{1 + (Q_3^2 \mathbf{v}^2)}}, (6.26)$$

Первый сомножитель в (6.26) — квадрат K(f) системы из двух связанных контуров, второй — значение K(f) для одиночного контура. Таким образом, (6.26) описывает 3-каскадный усилитель, один из каскадов которого содержит одиночный контур, два каскада — идентичные связанные контуры. Если в программе убрать возведение в квадрат первого сомножителя, то получим уравне-

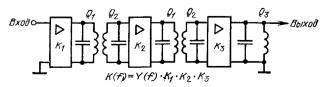


Рис. 6.14. Функциональная схема избирательного усилителя со связанными контурами и каскадом с одиночным контуром

ние кривой избирательности двухкаскадного усилителя (один каскад со связан-

ными контурами и один с одиночным контуром).

Расчет по (6.26) выполняется с помощью программы БПЗ8. Следует отметить, что для получения симметричной кривой избирательности целесообразно выбирать добротности Q_1 и Q_2 связанных контуров одинаковыми. Другие примеры расчета резонансных усилителей и цепей на микрокалькуляторах можно найти в [45, 46].

Описанные программы позволяют рассчитывать AЧX резонансных каскадов при линейном изменении текущего значения частоты f или обобщенной расстройки. При необходимости легко задать другой закон изменения, например логарифмический. Для вычисления АЧХ сложных линейных 4-полюсинков, выражаемых многочленами с числом полюсов $m \le 10$, могут использоваться программы, описанные в [2]. Программы расчета фильтров и передаточных характеристик линейных цепей описаны в работах [47—53].

ГЛАВА 7

РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ И ПЕРЕКЛЮЧАЮЩИХ УСТРОЙСТВ

7.1. РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛИНЕЙНЫХ ЦЕПЯХ ПО АНАЛИТИЧЕСКИМ ВЫРАЖЕНИЯМ

Три типа апалитически заданных входных воздействий: ступенчатое

$$\frac{u_{\text{BX}}(t) = 0 \text{ npm } t < 0;}{u_{\text{BX}}(t) = E \text{ npm } t \ge 0;}$$
 (7.1)

линейно изменяющееся

и экспоненциальное

$$u_{BX}(t) = 0 \text{ при } t < 0;$$
 $u_{BX}(t) = E\left(1 - e^{-t/\tau}\Phi\right) \text{ при } t > 0$ (7.3)

— позволяют с хорошим приближением описать нарастание реальных входиых сигналов. Сигналы в виде ступенчатого перепада (7.1) обычно используются как контрольные при оценке переходных характеристик цепей. На практике такое воздействие не реализуется, однако к нему своятся более близкие к реальным воздействиям (7.2) и (7.3), если $t_{\Phi 0}$ или t_{Φ} вначительно меньше времени нарастания переходной характеристики цепи в области малых времен.

Выражения (7.1)—(7.3) описывают характер возникновения воздействия При исчезновения воздействия временная зависимость его также может быть скачкообразной, линейной или экспоненциальной. Для многих встречающихся на практике линейных цепей реакция на аналитически заданные воздействия вида (7.1)—(7.3) может определяться аналитически. В таких случаях расчеты на микрокалькуляторах сводятся к вычислениям выходного напряжения по формулам. Рассмотрим несколько характерных примеров таких расчетов.

Для линейных дифференцирующих цепей выходное напряжение u_2 (t) в любой момент времени t можно найти, воспользовавшись интегралом Дюамеля

(см. подробнее в § 7.11). Так, для RC-цепи

$$u_{2}(t) = \int_{0}^{t} (du_{BX}/dt)_{t=t-\theta} \alpha(\theta) d\theta, \qquad (7.4)$$

где $a\left(\theta\right)=\mathrm{e}^{-\theta/RC}$ — переходная характеристика цепи; θ — текущее время.

При линейно нарастающем входном сигнале вида (7.2) интегрирование (7.4) дает:

$$u_2(t) = E \frac{\tau}{t_{\Phi^0}} \left(1 - e^{-t/\tau}\right) \text{ при } t \leqslant t_{\Phi^0};$$
 (7.5)

$$u_2(t) = u_2(t_{(\phi_0)}) e^{-(t-t_{(\phi_0)})/\tau} \text{ при } t > t_{(\phi_0)},$$
 (7.6)

где $\tau = RC$ (или $\tau = L/R$ для RL-цепи) — постоянная времени цепи.

Временная зависимость $u_2(t)$ по этим выражениям рассчитывается с помощью программы БПЗ9. Вначале вычисляется $(t-t_{(0)})$ и сравнивается t со значением $t_{(0)}$. Если $t\leqslant t_{(0)}$, то организуется вычисления по (7.5), в противном случае — по (7.6). После вычисления u_2 на даином шаге значению t дается приращение Δt и производится безусловный

переход к началу программы. Перед выдачей значения u_2 (t) выдается соответствующее значение t (для удобства составления таблицы).

При экспоненциальном воздействии на липейную дифференцирующую RC-цепь (7.4) дает

начения
$$u_2(t)$$
 выдается соответствующее значения $t_2(t)$ выдается соответствующее значения таблицы). При экспоненциальном воздействии на ливиную дифференцирующую RC -цепь (7.4) дает $u_2(t) = \frac{E}{1-\tau_{\Phi}/\tau} \left(e^{-t/\tau} - e^{-t/\tau_{\Phi}} \right)$ при $\tau \neq \tau_{\Phi}$; $(7.7) - B$ $(7.7) - B$ (7.8) Рис. 7.1. Пвухэкспоненциальный $t_2(t) = (Et/\tau_{\Phi}) e^{-t/\tau_{\Phi}}$ при $t_3(t) = (Et/\tau_{\Phi}) e^{-t/\tau_{\Phi}}$ при $t_4(t) = (Et/\tau_{\Phi}) e^{-t/\tau_{\Phi}}$

$$u_2\left(t\right) = \left(Et/ au_{\Phi}\right) \, {\rm e}^{-t/ au_{\Phi}} \,$$
 при $au = au_{\Phi}$. (7.8)

Расчет u_2 (t) выполняется по программе БП40. Программа обеспечивает сравнение τ с τ_{Φ} . При $\tau \neq \tau_{\Phi}$ вычисления проводятся по (7.7), а при $\tau = \tau_{\Phi}$ — по

(7.8). Перед выдачей значения u_2 (t) выдается соответствующее значение t. Временная зависимость вида (7.7) при $\tau > \tau_{\Phi}$ является частным случаем временной зависимости напряжения двухэкспоненциального импульса (42):

$$u(t) = B\left(e^{-t/\tau} - e^{-t/\tau}\Phi\right), \tag{7.9}$$

где экспонента ${
m e}^{-t/ au_{\rm fl}}$ формирует в основном фронт импульса. а ${
m e}^{-t/ au}$ его спад (рис. 7.1).

Дифференцируя (7.9) по времени t и полагая du/dt=0, находим время нарастания двухэкспоненциального импульса до максимального значения и (t)

$$t_{\rm M} = \tau \tau_{\oplus} \ln \nu / (\tau - \tau_{\oplus}), \tag{7.10}$$

rде $v = \tau/\tau_{db}$.

Подставив (7.10) в (7.9), найдем относительную амплитуду импулься

$$k_M = A/B = e^{-\nu_t} - (e^{-\nu_t})^{\nu},$$
 (7.11)

(7.12)

где $v_1 = (\ln v)/(v-1)$. (7.12) Сравнивая (7.7), (7.8) и (7.9), можно найти, что выходной импульс линейной дифференцирующей цепи при экспоненциальном воздействии тождествен двухэкспоненциальному, если положить

$$B = (1 - \tau_{\Phi}/\tau)^{-1} = (1 - 1/\nu)^{-1}.$$

Тогда относительная амилитуда импульса на выходе дифференцирующей цепп

$$U_m'/E = k_M (1 - 1/\nu)^{-1},$$
 (7.13)

где U_m — амплитуда выходного импульса. Расчет по этим выражениям реализуется при использовании программы БП41. Последовательность выдачи параметров при расчете следующая: v, tm.

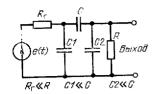


Рис. 7.2. Реальная дифференцирующая цепь

 v_1 , k_M , $k_{\rm H}$. Для расчета активной длительности двухэкспоненциального импульса [42] даны приближенные (с точностью до 10%) выражения

$$t_0 = \tau (0.78 + 2/\nu) \text{ при } \nu < 20;$$
 (7.14)

$$t_{\alpha} = \tau (0.7 + 3/\nu) \text{ при } \nu > 20.$$
 (7.15)

Расчет по формулам (7.14) или (7.15) реализуется программой БП42, с помощью которой значение у сравнивается с числом 20 и в зависимости от результатов сравнения автоматически вычисляется $t_{\rm tt}$.

С учетом конечного сопротивления источника входного сигнала $R_{\rm r}$ и паразитных емкостей $C_{\rm 1}$ и $C_{\rm 2}$ на входе и выходе дифференцирующая RC-цепь принимает вид, показанный на рис. 7.2. Для нее реакция на ступенчатое входное воздействие имеет вид также двухэкспоненциального импульса

$$u_2(t) = k_{\pi} E\left(e^{-t/\tau} - e^{-t/\tau}\phi_0\right),$$
 (7.16)

где при $R_{\Gamma} \ll R$:

$$\tau \simeq R_{\rm p} (C + C_2); \tag{7.17}$$

$$\tau_{\text{tho}} \simeq R_{\text{r}} (C_1 + C_2);$$
(7.18)

$$k_{\pi} \simeq \left(1 + \frac{R_{\Gamma}}{R} - \frac{C_1 + C_2}{C}\right)^{-1}$$
 (7.19)

Если на вход такой цени подается сигнал в виде экспоиенциального перепада то вместо $\tau_{\Phi 0}$ надо записать значение $\sqrt{\tau_{\Phi 0}^2 + \tau_{\Phi}^2}$. Таким образом, по существу цепь на рис. 7.2 может рассчитываться по описанным ранее программам.

Объем программной памяти микрокалькулятора «Электроника БЗ-21» позволяет рассчитывать переходную характеристику линейных многокаскадных усилителей в области малых времен. Последняя при идентичных каскадах с экспоненциальной переходной характеристикой описывается выражением [30]

$$\sigma(t) = \frac{K(t)}{i\zeta} = 1 - \left[1 + \frac{t}{\tau_{B}} + \frac{1}{2!} \left(\frac{t}{\tau_{B}}\right)^{2} + \cdots + \frac{1}{(N+1)!} \left(\frac{t}{\tau_{B}}\right)^{N-1}\right] e^{-t/\tau_{B}}, \tag{7.20}$$

где N — число каскадов; K_0 — общий коэффициент усиления всех каскадов на средних частотах: au_B — постоянная времени верхних частот одного каскада. Ограничившись числом каскадов $N\leqslant 6$ и введя выражения

$$\tau = t/\tau_{\rm B}; \quad k_3 = \frac{1}{3!} = \frac{1}{1 \cdot 2 \cdot 3} = 0.167;$$

$$k_4 = \frac{1}{4!} = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} = 4.17 \cdot 10^{-2}; \quad k_5 = \frac{1}{5!} = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 8.33 \cdot 10^{-3},$$

,преобразуем (7.20) к виду, удобному для вычислений на микрокалькуляторе:

$$a(\tau) = 1 - (1 + \tau + \tau^2/2 + k_3\tau^3 + k_4\tau^4 + k_5\tau^5)e^{-\tau}.$$
 (7.21)

Вычисления по (7.21) для $N=3\dots 6$ осуществляются по программе БП43. Значения k_3 , k_4 и k_5 заиосятся в регистры, что уменьшает число шагов программы и позволяет использовать ее для расчетов при разных N. При N<6 вместо неиспользованных коэффициентов в соответствующие им регистры виосятся нули.

7.2. РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛИНЕИПЫХ И НЕЛИНЕЙНЫХ ЦЕПЯХ 1-ГО ПОРЯДКА ЧИСЛЕННЫМ МЕТОДОМ ПЕРЕМЕННЫХ СОСТОЯНИЯ

Анализ переходных процессов в линейных цепях усложняется по мере усложнения входного воздействия. Особый интерес представляет анализ при произвольном (заданном графически или таблично) воздействии, который целесообразно проводить численными методами. Отклик же нелинейных цепей даже на простейшие воздействия, как правило, не рассчитывается аналитическими методами, что делает принципиально необходимыми численные мстоды. Переходные процессы удобно рассчитывать классическим методом переменных состояния, в качестве которых берутся напряжения на кондеисаторах, токи через индуктивные элементы и другие параметры цепи, которые не могут изменяться мгновенно из-за ограничений, налагаемых на них законами коммутации.

Часто оказывается необходимым рассчитывать переходные процессы в простейших RC- и RL-цепях при произвольном $u_{\rm BX}$ (t), заданном дискретными

значениями. Цепь *RC* описывается уравнениями состояния:

$$du_C/dt = (u_{BX}(t) - u_C)/\tau$$
; (7.22)

$$u_R(t) = u_{BX}(t) - u_C,$$
 (7.23)

где $\tau = RC$ — постоянная времени цепи. Если снимать $u_{\mathrm{Bix}}(t)$ с конденсатора, цепь будет интегрирующей, если с резистора — дифференцирующей.

Для расчета u_C (t) можно воспользоваться стандартной программой 20 (см. § 2.5), реализующей метод Рунге—Кутта 4-го порядка. Для этого в ее незаполненную часть следует вписать выражение $F6\uparrow F7- \uparrow F5\div$. Оно служит для вычисления правой части (7.22) при $\tau=P5$ и $u_{\rm BX}=P6$. Однако применение стандартной программы не всегда удобио, так как требует перед каждым шагом вычислений вносить в регистр 6 новое значение $u_{\rm BX}$ (t) и вручную вычислять u_R (t). Кроме того, многократное обращение к подпрограммам ведет к большому времени счета (около 16 с на один шаг). Поэтому целесообразно составить специальную программу для таких расчетов. С этой целью, обозначив

$$\theta = t/\tau = t/RC; \tag{7.24}$$

$$H = \Delta t \cdot \tau = \Delta t / RC, \qquad (7.25)$$

после простых преобразований приведем основные уравнения метода Рунге— Кутга 4-го порядка (2.16) при x=t и $y=u_{\mathcal{C}}$ к следующему виду:

$$\begin{split} u_{C_{n-1}} &= u_{C_n} + H\left(k_1 + 2k_2 + 2k_3 + k_4\right)/6\,, \\ &\text{ где } k_1 = u_{\text{BX}}\left(\theta_n\right) - u_{C_n} = u_{R_n}\,; \\ &k_2 = u_{R_n}\left(1 - H/2\right); \\ &k_3 = u_{R_n} - u_{R_n}\left(1 - H/2\right) H/2\,; \\ &k_4 = u_{\text{BX}}\left(\theta_n\right) - u_{C_n} - u_{R_n} H + u_{R_n}\left(1 - H/2\right) H^2/2\,. \end{split}$$

Подставляя $k_1 = k_4$ в (7.26), получа**ем ок**ончательную систему уравнений в более простом виде:

$$u_{C_{n+1}} = u_{C_n} + Hu_{R_n} (6 - 3H + H^2 - H^2 H/4)/6;$$

$$u_{R_n} = u_{BX} (\theta_n) - u_{C_n}; \quad \theta_{n+1} = \theta_n + \Delta 0.$$

Расчет по этим формулам реализует программа БП44. По сравнению со стандартной программой время вычисления по ней на одном шаге уменьшается до 10 с, причем вычисляется не только $u_C(\theta)$, но и $u_R(\theta)$. После вычисления

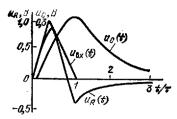


Рис. 7.3. Результаты расчета переходного процесса *RC*-цепи методом Рунге — Кутта

 $u_{R}(\theta)$ сразу же набирается новое значение $u_{\rm BK}(\theta)={\rm PX}$, иажимается клавиша С/П и т. д. Пример расчета при H=0,1 дан на рис. 7.3

Переходные процессы можно рассчитывать также неявными методами. Так, неявный метод

Эйлера реализуется выражением

$$y_{n+1} = y_n + hf(y_{n+1}, x_n),$$
 (7.27)

где y_{n+1} входит как в левую, так и в правую части выражения (7.27). В общем случае для решения (7.27) на каждом шаге приходится использовать тот или иной итерационный метод. Это значительно усложняет реализацию неявного

метода и ведет к большим затратам времени на вычисления при каждом шаге. Поэтому для расчетов на микрокалькуляторах этот метод (за исключением отмеченных далее особых случаев) почти не используется. Достоинством неявым методов является отсутствие числовой исустойчивости решения при больших h.

В отдельных случаях уравнение (7.27) удается разренить относительно y_{3+1} аналитически. Так, для рассмотренной RC-цепи (7.27) приобретает вид

 $(y-u_C, h=\Delta t, x=t)$

$$u_{C_{n+1}} = u_{C_n} + \Delta t (u_{\text{BX}}(t_n) - u_{C_{n+1}})/\tau$$
.

I зэрешив это уравнение относительно $u_{C_{n+1}}$, получим

$$u_{C_{n+1}} = \frac{\tau u_{C_n} + \Delta t u_{BX}(t)}{\tau + \Delta t} = \frac{u_{C_n}}{1 + \Delta t/\tau} + \frac{u_{BX}(t_n)}{1 + \tau/\Delta t}.$$
 (7.28)

Сравним (7.28) с уравнением простого явного метода Эйлера для данной цени:

$$u_{C_{n+1}} = u_{C_n} + \Delta t \left(u_{\text{BX}}(t_n) - u_{C_n} \right) / \tau. \tag{7.29}$$

Пз (7.29) видно, что при больших $\Delta t/\tau$ приращение ($u_{C_{n+1}}-u_{C_n}$) может изменить нормальный знак, а при $\Delta t/\tau>2$ возникает нарастающая числовая неустойчивость решения. Согласно (7.28) такая ситуация при неявном методе принчильно невозможна. Однако это достоинство на практике обычно не реализуется, так как при больших Δt погрешность оказывается недопустимо большой (в при малых Δt предпочтение отдается более простым явным методам).

Интересно отметить, что абсолютные погрешности явного и неявного методов близки, но противоположны по знаку. Взяв полусумму результатов, полученных этими методами, можно получить существенно меньшую погрешность при больших $\Delta t/\tau$. Такой комбинированный метод расчета реализует программа БП45. В табл. 7.1 сопоставлены результаты расчета контрольного примера — расчета $u_{\rm Bbx}(t)$ дифференцирующей RC-цепи при скачкообразном воздействии для $u_{\rm Bx}(t)=1$ В при $t\geqslant 0$ и $\Delta t/\tau=0$,5. По точности комбинированный метод уступает методу Рунге— Кутта 4-го порядка, но значительно превосходит явный и неявный методы Эйлера.

Нелинейные RC-цепи в общем случае описываются нелинейным диффереициальным уравнением вида

$$du_C/dt = (u_{BX}(t) - u_C)/[R(u_R)C(u_C)], \qquad (7.30)$$

гле R (u_R) — нелинейное сопротивление и C (u_C) — нелинейная емкость R Сиспи. Решение (7.30) с нелинейным R (u_R) будет рассмотрено в § 7.3 (пример слемы с туннельным диодом). Рассмотрим расчет переходного процесса в R С-цепи с нелинейной емкостью (варикапом), описываемой зависимостью

$$C = C_0 \sqrt{1/(1 + u_C/\varphi_K)}$$

Таблица 7.1 Результаты контрольного расчета u_R (t) дифференцирующий RC-цепи при большом шаге $\Delta t/\tau = 0.5$

1		$u_{_{\mathbf{B}\mathbf{X}}}$ (θ). В. при методе				
	е—t/т (точное решение)	Эйлера явном	Эйлера неявном	Эйлера комбиниро- ванном	Рунге— Кутта 4-го порядка	
0,5	0,606530	0,5	0,666666	0,5833333	0,606770	
1	0,367879	0,25	0 4444444	0,3472222	0.368170	
1,5	0,223130	0,125	0,2962563	0,2106482	0,223395	
2	0 1355535	0,0625	0,1975308	0,1300154	0,135545	

где $\phi_{\rm R}$ — контактная разность потенциалов; u_C — обратиое напряжение. Пред. положим, что $u_{\rm Bx}$ (t) нарастает по в кспоненциальному закону в постояниой времени_ $\tau_{\rm Bx}$ и предельным уровнем U_m .

При экспоненциальном закоие изменения $u_{\rm BX}$ (t), применяя простой метод Эйлера, получаем следующие уравнения для численного моделирования нелинейной RC-цепи:

$$u_{BX}(t_n) = U_m \left(1 - e^{-t_n/\tau_{BX}} \right);$$

$$u_{C_{n+1}} = u_{C_n} + \frac{\Delta t}{RC_0} \frac{u_{BX}(t_n) - u_{C_n}}{\sqrt{1/(1 + u_{C}/\phi_H)}};$$

$$t_{n+1} = t_n + \Delta t.$$

Таблица 7.2 Результаты расчета нелинейной *RC*-цепи при экспоненциальном входном воздействии

tn, 10→ c	$u_{BX}(t_n)$, B	⁷ C(tn), B	u _R (tn), E	
0	0	0	0	
1	1,90325	0	1,90325	
2	3,625386	0,190325	3,435061	
4	6,5936	1,176490	5,417109	
6	9,023766	3 ,126234	5,897531	
8	11,01342	5,874051	5,13937	
10	12,64241	8,798765	3,843644	
12	13,97611	11,31756	2,658548	
14	15,06806	13,24310	1,824957	
16	15,96207	14,66582	1,296245	
18	1 6,6 940 2	15,7329 7	0,961046	
20	17,29329	16,55617	0,737119	
25	18,35830	17,94727	0,411029	
30	19.00425	18,76 422	0.240025	

Расчет по этим формулам реализуется программой БП46. При каждом шаге вычислений клавиша С/П нажимается 4 раза с перерывами на время счета, что ведет к выдаче последовательно t_n , $u_{\rm BX}$ (t_n), $u_{\rm C}$ (t_n) и $u_{\rm R}$ (t_n). Перед пуском первого шага нажимаются клавиши В/О. Вычисления начинаются с улевых значений указанных величии. Результаты расчета цепи с параметрами $\Delta t = 10^{-8}$ с, $RC_0 = 10^{-7}$ с, $\tau_{\rm BX} = 10^{-7}$ с, $U_m = 20$ В, $\tau_{\rm R} = 0.8$ В приведены табл. 7.2.

Следует отметить, что при анализе нелипейных цепей шаг Δt следует брать меньше минимальной постоянной времени $\tau_{\text{мин}}$. В последнем примере $C_{\text{мин}}=C(20~\text{B})=0,196C_0$ Следовательно, $\tau_{\text{мин}}=0.196~RC_0=0.196\cdot10^{-7}~\text{c}>\Delta t=10^{-8}~\text{c}$. Поэтому числовая неустойчивость в данном случае отсутствовала.

Возможности микрокалькуляторов «Электроника БЗ-21» для расчета переходных процессов в нелинейных цепях довольно ограничены. Так, методом Рунге—Кутта 4-го порядка можно рассчитывать только простейшие цепи. Значнтельно шире возможности микрокалькуляторов «Электроника БЗ-34». Например, программа ПП8/34 нозволяет рассчитывать схемы с приборами, имеющими достаточно сложные нелинейные ВАХ. Однако время таких расчетов значительно (до 10—60 с на один шаг). Это время на 2 норядка меньше при выполнении расчетов на микро-ЭВМ «Электроника ДЗ-28». Реализация метода Рунге—Кутта на этой ЭВМ обєспечивается программой ППЗ-28.

7.3. РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ПЕРЕКЛЮЧАЮЩЕЙ ЦЕПИ НА ТУННЕЛЬНОМ ДИОДЕ

Расчет переключающей цепи на туниельном диоде (рис. 7.4) является хорошей практической иллюстрацией к применению микрокалькулятора для решения нелинейного дифференциального уравнения первой степени. Схемы, приведенные на рис. 7.4, находят широкое применение, например, в узлах синхронизации современных электронных осциллографов.

Применив модель и аппроксимацию N-образной BAX туннельного диода, описаные в § 3.3, для расчета цепи на рис. 7.4, а получим дифференциальное уравнение

$$C_0 \frac{du}{dt} = I_{BX}(t) - Aue^{-\alpha u} - D(e^{\beta u} - 1).$$

Отсюда для простого метода Эйлера

$$u_{n+1} = u_n + \Delta t \left(I_{BX}(t) - Aue^{-\alpha u} - D(e^{\beta u} - 1) \right) / C_0.$$
 (7.31)

Вычисления по (7.31) обеспечиваются программой ВП47. Для примера временная зависимость u (t) при действии на туннельный диод прямоугольного импульса тока рассчитана (рис. 7.5) при следующих данных: $m\phi_T=0.055$ В; $U_1=0.1$ В; $D=I_0=10^{-8}$ А; $C_0=20\cdot 10^{-12}$ Ф; $I_{\Pi}=10$ мА; A=0.2718; $I_{\Pi X}=12$ мА при $t\leqslant t_{\Pi}$ и $I_{\Pi X}=0$ при $0>t>t_{\Pi}$; $\Delta t=0.1$ нс; $t_{\Pi}=3$ нс. Ответность обеспечаться в $t_{\Pi X}=0.0718$; $t_{\Pi X}=$

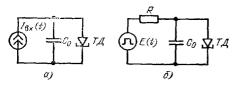


Рис. 7.4. Переключающие цепи с туннельным днодом, управляемым импульсами тока (а) и напряжения (б)

четливо видны задержка переключения и регенеративные стадии этого процесса.

Переключающая цепь на рис. 7.4, б обычно используется как быстродействующий триггер с двумя устойчивыми состояниями равновесия. Из одного состояния в другое триггер переходит при кратковременном увеличении или уменьшении E(t) (рис. 7.6). Возможно также пе-

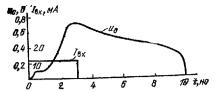


Рис. 7.5. Результаты расчета переходного процесса при переключении туннельного диода импульсами тока

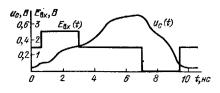


Рис. 7.6. Результаты расчета переходного процесса при переключении триггера на туннельном диоде

реключение разнополярными импульсами тока $I_{\rm BX}\left(t\right)$ — они увеличивают напряжение E на величину $RI_{\rm BX}\left(t\right)$. Нелинейное дифференциальное уравнение, описывающее работу данной цепи, имеет вид

$$C_0 \frac{du}{dt} = \frac{\dot{E}(t) - u}{R} - Aue^{-\alpha u} - D(e^{\beta u} - 1).$$

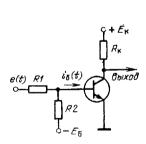
Следовательно, по простому методу Эйлера

$$u_{n+1} = u_n + \frac{\Delta t}{C_0} \left[\frac{E(t_n) - u_n}{R} - A u_n e^{-\alpha u_n} - D(e^{\beta u_n} - 1) \right]. \quad (7.32)$$

Схема на рис. 7.4, б рассчитывается по программе ВП48. Из рис. 7.8, на котором приведена расчетная зависимость $u\left(t\right)$, легко оценить разрешающее время триггера и параметры его стабильных состояний.

74 РАСЧЕТ КЛЮЧЕЙ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ

Рассчитывать ключ на биполярном транзисторе (рис. 7.7) удобно исходя из зарядовой модели, описанной в § 3.4. Рассмотрим два характериых случая, когда ключ управляется прямоугольным импульсом (рис. 7.8) и импульсами с конечной длительностью фронта и среза (рис. 7.9 и 7.10).



Puc. 7.7. Схема ключа на билолярном транзисторе

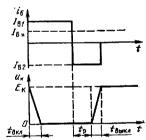


Рис. 7.8. Временные диаграммы ключа при запуске прямоугольным импульсом

В первом случае, учтя нелинсйную зависимость емкости $C_{\rm K0}$ от напряжения $U_{\rm K5} \simeq U_{\rm K5}$, времена включения, рассасывания неосновных носителей и выключения можно определять по известным аналитическим выражениям [21]:

$$t_{BBJ} = \tau_{BBJ} \ln \left[I_{BJ} / (I_{BJ} - I_{BB}) \right]; \tag{7.33}$$

$$t_{\rm D} = t_{\rm D} \ln \left[(I_{\rm B1} - I_{\rm B2}) / (I_{\rm B B} - I_{\rm B2}) \right];$$
 (7.34)

$$t_{\rm BMKJ} = t_{\rm BMKJ} \ln \left[(I_{\rm B2} - I_{\rm BH}) / I_{\rm B2} \right],$$
 (7.35)

$$\tau_{8KR} = (\tau_T + 1.6\overline{C}_{KG} R_K) (\beta_N + 1);$$
 (7.36)

$$\epsilon_{\rm p} = k_{\rm p} \, \tau_{\rm T} \, (\beta_N + 1); \tag{7.37}$$

$$\tau_{\rm BMRJ} = (\tau_T + 2.1 \overline{C}_{\rm R6} R_{\rm R}) (\beta_N + 1)$$
 (7.38)

и численные коэффициенты 1,6 и 2,1 учитывают иелинейность зависимости $C_{\rm R6}$ от $U_{\rm K6}$ (усредненная емкость $\overline{C}_{\rm R6}$ нолучается разиой при включении и выклю. чении ключа). Коэффициент $k_{\rm p}$, в общем случае не равный 1, позволяет учесть некоторое отличие постоянной времени рассасывания от постоянной времени

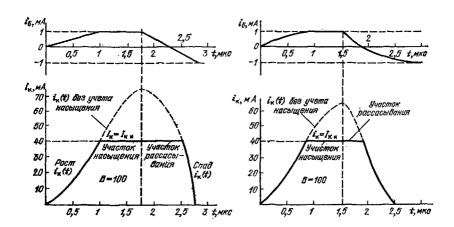


Рис. 7.9. Результаты расчета переходного процесса ключа при запуске импульсами с линейно изменяющимися фронтом и срезом

Рис. 7.10. Результаты расчета переходного процесса ключа при запуске импульсами с экспоненциально изменяющимися фроитом и срезом

 $au_{
m B}= au_T~(eta_N+1)$ в активном режиме (au_T — время пролета носителями активной области прибора). При записи $au_{
m P}$ емкость $C_{
m RG}$ не учитывается, так как $u_{
m KS}~(t)=$ const иа стадии рассасывания носителей и емкостный ток равен нулю. Токи $I_{
m E1}$, $I_{
m E2}$, $I_{
m E}$ и сопротивление резистора $R_{
m H}$ рассчитываются по простым формулам [21] в ручном режиме.

Расчет по приведениым выражениям реализуется двумя сопряженными программами БП49 и БП50. В первой из них по (7.36)—(7.38) вычисляются постоянные времени $\tau_{\text{вкл}}$, $\tau_{\text{р}}$ и $\tau_{\text{вынл}}$. Значение $k_{\text{p}}=1,0$ вписано в программу по адресам 25, 30 и 31 (при $k_{\text{p}}\neq 1$ следует по этим адресам вписать иужное значение k_{0}). После вычислений постоянные времени заносятся в регистры 2, 3 и 4. Следующая программа является продолжением первой и позволяет вычислить значения $t_{\text{вкл}}$, t_{p} и $t_{\text{выкл}}$ по (7.33)—(7.35).

При $\tau_T=10^{-8}$ с, $C_{\rm R6}=5\cdot 10^{-18}$ Ф, $\beta_N+1=101$ и $R_{\rm R}=500$ Ом расчет по первой программе дает: $\tau_{\rm BKR}=1,414\cdot 10^{-6}$ с, $\tau_{\rm p}=1,01\cdot 10^{-6}$ с и $\tau_{\rm BKR}=1,54\cdot 10^{-6}$ с. Если $I_{\rm B1}=2$ мА, $I_{\rm BH}=I_{\rm K}$ и $I_{\rm B2}=-2$ мА, то расчет по второй программе дает: $t_{\rm BKR}=0,407\cdot 10^{-6}$ с, $t_{\rm p}=0,475\cdot 10^{-6}$ с и $t_{\rm BMKR}=0,344\cdot 10^{-6}$ с.

При конечной длительности фроита входного сигнала влияние нелинейности емкости $C_{\rm HG}$ (и самой емкости) существенно ослабляется. В этих случаях
часто представляет интерес расчет временной зависимости коллекторного тока.

При запуске ключа импульсами с линейными фронтом и срезом (см. рис. 7.9) для времениой зависимости i_6 (t) можио использовать универсальное выражения

$$i_{\delta}(t) = I_{\delta}(a + t/\tau_{\Phi}).$$
 (7.39)

Так, если a=0 и $I_{\rm B} > 0$, получим линейный рост $I_{\rm G}(t)=I_{\rm B}t/t_{\rm \Phi}$. При a=0 и $I_{\rm G} < 0$ получим линейный спад $I_{\rm G}(t)=-I_{\rm B}t/t_{\rm \Phi}$. Если взять a=-0.5 и $I_{\rm B} < 0$, то произойдет яниейный спад $I_{\rm G}(t)$ от уровня +0.5 $I_{\rm B}$ до $-0.5I_{\rm B}$, т. е.

$$i_6(t) = -I_6(-0.5 + t/t_0).$$

Нажонец, при a=0 и $t=t_{\Phi}$ зависнмость (7.39) имеет вид t_{Φ} (t) = t_{B} = const. Для рассматриваемого случая уравиения зарядной модели можно представить в виде

$$dQ_{6}/dt + Q_{6}/\tau_{\beta} = I_{B} (a + t/t_{\Phi})_{1}$$

$$Q_{6} \approx \tau_{B} i_{R}/\beta_{N}.$$

Отсюда

$$\frac{dl_{\rm H}}{dt} + \frac{l_{\rm R}}{\tau_{\rm B}} = \frac{\beta_N \, l_{\rm B} \, (a + t/t_{\rm \Phi})}{\tau_{\rm B}} .$$

Численный расчет простым методом Эйлера выполняется по формулам

$$i_{\mathbf{R}n+1} = i_{\mathbf{R}n} + \frac{\Delta t}{\tau_{\beta}} \left[i_{\mathbf{R}}(\infty) \left(a + \frac{t}{t_{\phi}} \right) - i_{\mathbf{R}n} \right],$$

$$t_{n+1} = t_n + \Delta t,$$

где $l_{\rm R}$ (∞) = $\beta_N l_{\rm B}$. Расчет по этим выражениям можно выполнить по программе БП51. Расчетная зависимость $i_{\rm R}$ (t), приведенная на рис. 7.9, получена для транзистора с $\tau_{\rm B}=10^{-6}$ с ($\Delta t=50\cdot 10^{-9}$ с). При включении принималосы $l_{\rm R}$ (∞) = 100 мA; a=0; $i_{\rm R}$ (0) = 0. При выключении $i_{\rm R}$ (∞) = -200 мA; a=0; $i_{\rm R}$ (0) = 73 мA.

Зависимость $i_{6}\left(t\right)$ вида, показаиного на рис. 7.10, может быть получена соответствующим выбором I_{B0} и I_{Bm} в выражении

$$i_{6}(t) = I_{60} + I_{8M} (1 - e^{-t/\tau_{8X}}).$$

Тогда

$$\frac{dt_{R}}{dt} + \frac{t_{R}}{\tau_{B}} = \frac{\beta_{N} \left[I_{B0} + I_{BM} \left(1 - e^{-t/\tau_{BX}}\right)\right]}{\tau_{B}}$$

и для численных расчетов пригодиы уравнения:

$$t_{n+1} = t_n + \Delta t \tag{7.40}$$

$$l_{\text{R}n+1} = l_{\text{R}n} + \frac{\Delta t}{\tau_{\text{B}}} \left[I_{0\text{K}} + l_{\text{KM}} \left(1 - e^{-t_{n+1}/\tau_{\text{HX}}} \right) - l_{\text{R}n} \right],$$
 (7.41)

где $I_{0K} = \beta_N I_{0B} \ и I_{KM} = \beta_N I_{BM}$

Вычисления по (7.40) и (7.41) реализуются программой БП52. Результаты вычислений показаны на рис. 7.10 для случая, когда $\tau_{\rm BX}=0.5\cdot 10^{-6}$ с; $\tau_{\rm B}=10^{-6}$ с; $\Delta t=10^{-7}$ с; $I_{\rm OK}(0)=0$; $I_{\rm R}(0)=0$; $I_{\rm RM}=100$ мА при включении (при выключении $I_{\rm OK}=100$ мА; $I_{\rm KM}=-200$ мА и $i_{\rm H}(0)=I_{\rm KM}=64$ мА).

7.5. РАСЧЕТ КЛЮЧА НА МАЛОМОЩНОМ ПОЛЕВОМ ТРАНЗИСТОРЕ

Типовой ключ на маломощном полевом транзисторе с управляющим *p— п*-переходом (рис. 7.11) описывается иелинейным диффереициальным уравнением

$$Cdu/dt = (E - u)/R - I_C(u, u_3),$$
 (7.42)

где для нелинейной зависимости $I_{\mathbb{C}}$ (u,u_3) целесообразно использовать единую аппроксимацию вида (3.15). В емкость C входят емкость монтажа, нагрузки и выходная емкость транзистора.

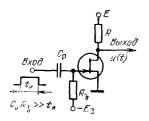


Рис. 7.11. Схема ключа на маломощном полевом тринзисторе

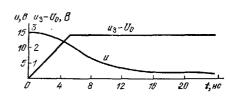


Рис. 7.12. Результаты расчета переходного процесса ключа на маломощном полевом транзисторе

Обозначив $\mathfrak{t}=RC$ и b'=b' (1 + $\mathfrak{\eta}$), для решения (7.42) простым методом Эйлера занишем следующие уравнения:

$$N_{n+1} = N_n + 1;$$

$$u_{n+1} = u_n + \frac{\Delta t}{r} \left[E - u - b' R (u_3 - U_0)^2 \left(1 - e^{-\frac{ku}{u_3 - U_0}} \right) \right].$$

Вычисления производятся по программе БП53. На рис. 7.12 приведены ре вультаты расчета переходного процесса ключа на полевом транзисторе с пара метрами: $b' = I_{\rm CM}/U_0^2 = 5 \, {\rm MA/B^2}; \ k = 1; \ U_0 = 3 \, {\rm B.}$ Параметры ключа: $b'R = 5 \, {\rm I/B}; \ R = 1 \, {\rm KOM}; \ E = 15 \, {\rm B}; \ C = 20 \, {\rm n\Phi}; \ \tau = 20 \, {\rm Hc.}$ Расчет велся при шаге $\Delta t = 1 \, {\rm Hc}$, входное воздействие было в виде линейно растущего перепада: напряжение ($U_3 - U_0$) возрастало с 0 до 2,5 В за 5 нс.

7.6. РАСЧЕТ КЛЮЧЕЙ НА МОЩНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ

Ключи на мощных МДП-транзисторах обеспечивают уникальное сочетание высокого быстродействия с большими переключаемыми токами [24, 25]. Так, ключ на МДП-транзисторе КП907 способен переключать ток до 2—2,5 A за время менее 1 нс.

Рассмотрим расчет переходных процессов в ключе (рис. 7.13) при различных приближениях. Оценить переходный процесс в идеальных условиях, когда L=0 и $R_\Gamma=0$, можно, решая нелинейное дифференциальное уравнение (7.42) при зависимости I_C (U_3 , U_C), определяемой (3.16). Используя простой метод Эйлера, получаем следующие расчетные выражения для зависимости u (t):

$$t_{n+1} = t_n + \Delta t; \tag{7.43}$$

$$u_{n+1} = u_n + \frac{\Delta t}{\tau} \left[E_C - u_n - R_c SU_3 \left(1 - e^{-pu_n/U_3} \right) \right],$$
 (7.44)

где $\tau = R_C C$ и $C = (C_{22} + C_{12} + C_H)$.

На рис. 7.13, в сплошной линией показаны результаты расчета по формужам (7.43) и (7.44), реализуемого программой БП54 при следующих данных S=0.03 А/В; p=2 (транзистор КП905); $R_0=100$ Ом; C=10 пФ; $\tau=1$ пс; $E_C=20$ В и $\Delta t=0.1$ нс.

Как видно из рис. 7.13, s, времена переключения ключа составляют 1 нс именее, что хорошо согласуется с экспериментальными данными [25]. Однако при таких малых временах переключения даже малая индуктивность L стоковой

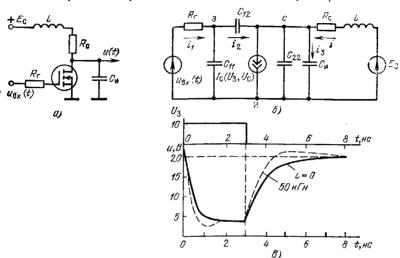


Рис. 7.13. Схема ключа на мощном МДП-транзисторе (a), эквивалентная схема (b) и пример расчета переходных процессов в нем (b)

цепи (единицы наногенри) может существенно влиять на характер и временные параметры переходного процесса. Учет $L \neq 0$ при $R_\Gamma = 0$ приводит к системе из двух дифференциальных уравнений 1-го порядка:

$$du/dt = (i - SU_3 (1 - e^{-pu/U_3}))/C;$$

$$di/dt = (E_C - u - iR_0)/L,$$

первое из которых нелинейно. Им соответствуют формулы для расчета простым методом Эйлера:

$$u_{n+1} = u_n + \left(\frac{\Delta t}{C}\right) [i_n - SU_3 (1 - e^{-\rho u_n/U_3})];$$
 (7.45)

$$i_{n+1} = i_n + \left(\frac{\Delta t}{L}\right) (E_C - u_{n+1} - i_n R_C).$$
 (7.46)

Расчет по (7.45) в (7.46) выполняется с помощью программы БП55. На каждом шаге вычислений выдается номер шага n, что позволяет оценивать текущее время $t_n = n\Delta t$. На рис. 7.13, в штриховой линией показан переходный процесс, рассчитанный при t=50 иГн и указанных остальных дапных ключа. Наличие индуктивности t ведет к уменьщению времени переключения при малых $m=t/(R_c^2C)$. Однако при m>0,25 во временной зависимости u (t) появляются выбросы. В рассматриваемом случае m=0,5 и эти выбросы отчетливо видны на кривой переходного процесса.

Всяможности расчета на серийных микрокалькуляторах переходных процессов в нелинейных ценях, описываемых дифференциальными уравнениями 2-то и более высокого порядков, ограничены. В частности, из-за этого при $L\neq 0$ приходится использовать упрощенную аппроксимацию для зависимости I_C (U_C , U_3) вида (3.14). В программе БП55 уже нет места для учета $R_{\Gamma}\neq 0$ и автоматического формирования более сложной, чем скачок, зависимости $U_{\rm Bx}$ (I) (олнако можно вручную задавать значения $I_{\rm Sh}$ па каждом $I_{\rm Sh}$ па кожном вручную задавать значения $I_{\rm Sh}$ па каждом $I_{\rm Sh}$ па каждом $I_{\rm Sh}$ па каждом $I_{\rm Sh}$ па каждом $I_{\rm Sh}$ па связь через проходную емкость $I_{\rm Cl}$, что допустимо только при $I_{\rm Cl}$ — 0. Таким образом, расчет переходных процессов оказывается в известной мере идеализированным даже при учете $I_{\rm Sh}$ — 0.

Эти ограничения практически отсутствуют при организации подобных расчетов на микро-ЭВМ. В пакете программ микро-ЭВМ «Электроника ДЗ-28» дана программа ПП9/28 расчета ключа (рис. 7.13, а) при $L \neq 0$ с учетом $R_{\rm L} \neq 0$ В этом случае ключ описывается системой из трех дифференциальных уравнений, следующих из рассмотрения эквивалентной схемы на рис. 7.13, δ [54]:

$$\frac{dU_3}{dt} = \frac{i_1 - i_2}{C_{11}}; \quad \frac{dU_C}{dt} = \frac{i_3}{C_{II}}; \quad \frac{d_1}{dt} = \frac{E_C - U_C - iR_c}{L},$$

где

$$i_{1} = (U_{BX} - U_{3})/R_{P};$$

$$i_{2} = \frac{i_{1}/C_{11} + (\iota - I_{C} - I_{3})/C_{22}}{1/C_{11} + 1/C_{22} - 1/C_{12}};$$

$$i_{3} = (i - I_{C} - i_{2})/(1 + C_{22}/C);$$

 $I_{\rm C}=f$ ($U_{\rm 3},~U_{\rm C}$) дается формулой (3.17); $U_{\rm BX}$ — напряжение генератора вхолного сигнала ($U_{\rm bx}\neq U_{\rm 3}$, так как в данном случае учтено копечное $R_{\rm 1}$)

Вычисление любого заданного аналитически значения $U_{\rm BX}$ (t) программой ПП9/28 обеспечивается с помощью подпрограммы, помеченной меткой M 0002. Непосредственно в текст программы вписана подпрограмма вычисления $U_{\rm BX}$ (t) в виде импульса с экспоненциальными фронтом и срезом:

$$\begin{split} &u_{\mathrm{BX}}\left(t\right) = U_{m}\left(1 - \mathrm{e}^{-t/\tau_{\mathrm{BX}}}\right) \text{ npn } t \leqslant t_{\mathrm{H}}; \\ &u_{\mathrm{BX}}\left(t\right) = u_{\mathrm{BY}}\left(t_{\mathrm{H}}\right) \mathrm{e}^{-\left(t - t_{\mathrm{H}}\right), \tau_{\mathrm{BY}}} \text{ npn } t > t_{\mathrm{H}}. \end{split}$$

Такой сигнал чаще всего используется для запуска ключей на мощных МДП-транзисторах. При необходимости расчета переходиого процесса при другом законе изменения $u_{\rm HX}$ (t) подпрограмма может быть изменена без изменения текста основной программы.

После ввода исходных данных при каждом пуске согласно программе ПП9/28 выдаются значения $u_{\rm BX}$ (t) = PV, t — PX, затем $U_{\rm C}$ (t) = PV п t (t) = PX (время вычисления для одного значения t — доли секунды, так что на практике оно ограничено лишь скоростью записи результатов) Предусмотрена везможность выдачи результатов перез интервалы времени $N\Delta t$, что позволяет выбирать Δt малым с целью обеспечения необходимой точности и предотвращения числовой неустойчивости решения. Вычисления по программе легко проверить, введя в рассмотренном примере дополнительные данные $t_{\rm BX}$, $t_{\rm H}$, C_{11} , C_{12} , C_{22} , $R_{\rm F}$, b, $u_{\rm B}$ (0). При малых $R_{\rm F}$ и $t_{\rm BX}$ полученный результат будет близок к приведенному на рис. 7.13, 6 штриховой липией. Программа ПП9/28 реализует гостым методом Эйлера, так как из-за невысокой точности аппроксимении ВАХ полевого трачалстора применение более точного метода Рунге—Кутта пе дает особых $L_{\rm F}$ стмущест

7.7. РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ ПРЯМЫМ ЧИСЛЕННЫМ ИНТЕГРИРОВАНИЕМ

Нередко важно знать не саму зависимость напряжения (или гока) переходного процесса от времени, а время, в течение которого папряжение (или ток) меняется в определенных пределах. Например, длительность фроита и среза импульсов обычно оценивается как время, в течение которого $u\left(t\right)$ меняется от вначения $0.1U_m$ до $0.9U_m$, где U_m — амплитуда импульса Для импульсных устройств, описываемых нелинейным дифференциальным уравнением 1-го порядка, например вида

$$du/dt = (F - u - RI(u))/(RC). (7.47)$$

допускающим разделение переменных, получить время t можно численным интегрированием. Так, для уравнения (7.47) можно записать dt = CRdu'(E-u-RI(u)). Отсюда искомое время

$$t = CR \int_{u_{tr}}^{u_{tr}} \frac{du}{E - u - RI(u)}$$
 (7.48)

Процедуре численного интегрирования в общем случае должен предпествовать расчет статического режима соответствующей схемы (см. гл. 4), при котором определяются начальные $u_{\rm H}$ и конечные $u_{\rm B}$ значения u (t).

В качестве конкретного примера рассмотрим расчет переходного процесса включения ключа на полевом транзисторе, запускаемого перепадом $U_m =$ сольт или $t \geqslant 0$ (при U_3 (t) = var данный метод не применим). Для зависимостн I_C (u) маломощных и мощных полевых гранзисторов можно использовать обобщенное выражение

$$I_{\rm C} = I_{\rm C M} \left(1 - {\rm e}^{-u/U^*} \right)$$
, (7.49)

где для маломощных транзисторов $I_{\rm CM}=b'~(U_3-U_0)^2$, а для мощных $I_{\rm CM}=S~(U_3-U_0)$, причем $U^*=(U_3-U_0)^\prime p$. Тогда из (7.48) и (7.49) получим

$$\frac{t}{RC} = \int_{u_{G}}^{u_{G}} \frac{du}{E_{C} - u - Rl_{GM} (1 - e^{-u/U^{*}})}$$
(7 50)

Для вычислений по (7 50) воспользуемся программой вычисления определенного интеграла методом транеций (см. § 2.4), дополнив ее подпрограммой вычисления подынтегральной функции (7.50) Программа БП56 составлена таким способом

Следует отмегить, что вычисление интеграла методом трапеций дает более высокую точность, чем интегрирование дифференциальных уравнений простым методом Энлера (при том же шаге). Шаг Δu при этом следует выбирать из условия $\Delta u = (u_{\rm H} - u_{\rm R})^T N$, где N — целое число (обычно от 4 до 20).

Описанным методом можно рассчитывать не только единичные значения t, но и всю кривую монотойного переходного процесса. Пля этого следует задаваться рядом значений $u_{\rm R}$ и определять соогветствующие t_t (пример в табл. 7.3 для случая: $RI_{\rm CM}=30$ В; $R=R_{\rm C}=100$ Ом; $I_{\rm CM}=0.3$ А (прибор КП905); $U^*=5$ В; $E_{\rm C}=20$ В; C=10 пФ и $\tau=1$ нс). Надо помнить, что нельзя задавать $u_{\rm R}$ ниже остаточного напряжения включенного ключа в статическом режиме, поскольку в противном случае расчет будет заведомо ошибочным. При закрытом ключе $u_{\rm H}=(E_{\rm C}-I_{\rm C}_3)$ $R=E_{\rm C}$, где $I_{\rm C}_3$ — ток стока закрытого транзистора.

Результаты расчета переходного процесса включения ключа на мощном МДП-транзисторе

и. В	20	15	10	8	6	5	4
t/(RC)	0	0,189	0,443	0,588	0,805	1,003	2,09

7.8. РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛИНЕЙНЫХ И НЕЛИНЕЙНЫХ РЕЗОНАНСНЫХ ЦЕПЯХ

Резонансные коптуры широко применяются в импульсных устройствах. Так, высокодобротные контуры с ударным возбуждением используются в отметчиках временных интервалов, а низкодобротные контуры — для формирования коротких импульсов. Реакция реального (особенно низкодобротного) контура на перепад с конечной длигельностью фронта может вычисляться аналитически, ио расчетные формулы при этом оказываются весьма громоздкими и выводятся с рядом упрощений [37, 38]. Микро-ЭВМ позволяют вычислить реакцию численными методами, в частности методом переменных состояния. без таких упрошений

Параллельный колебательный контур (рис. 7.14) с ударным возбуждением коллекторным током i (t) транзистора описывается системой из двух линейных дифференциальных уравнений 1-го порядка.

$$\frac{du/dt = (i (t) - i_1 - w R)/C;}{di/dt = (u - i_1 r)/L.}$$
 (7.51)

С помощью программы БП57 решается система (7.51) при экспоненциально парастающем возбуждающем токе i (t) = 1A (1 — $e^{-t/\tau}$) простым методом Эйлера. На рис. 7.15 дан пример расчета переходного процесса по этой программе при следующих исходных данных: $M = \tau/\Delta t = 5$; $L = 10^{-3}$ Гн; $C = 10^{-9}$ Ф; $\Delta t = 0.25 \cdot 10^{-6}$ с; r = 20 Ом; $R = 10^4$ Ом; u (0) = 0 и t (0) = 0.

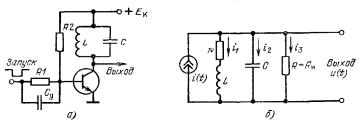


Рис. 7.14. Транзисторная схема возбуждения параллельного контура ударного возбуждения (а) и его эквивылентная схема (б)

Система (7.51) решается с помощью программы БП58 при линейно нарастающем до 1 А за время $t_{\Phi 0} = M \Delta t$ воздействии i (i). Результат расчета по ней дан на рис. 7.16 (R уменьшено до $2 \cdot 10^3$ Ом, остальные данные прежние). Следует отметить, что такой характер переходного процесса наблюдается при работе транзистора в схеме на рис. 7.14, a в активном режиме.

Последовательный контур, возбуждаемый источником напряжения $E\left(t\right)$ (рис. 7.17, a), описывается следующими дифференциальными уравнениями

$$d\iota/dt = (E(t) - iR - u)/L; du/dt = i/C.$$

По программе ВП59 рассчитывается переходный процесс при скачкообразном воздействии E (t) = E = const при $t \geqslant 0$. Результаты расчета представлены на рис. 7.17, 6 при E = 10 B; L = 10^{-8} Гн; C = 10^{-9} Φ ; R = 0; Δt = $0.5 \cdot 10^{-6}$ c; u (0) = 0; ι (0) = 0.

Аналогично могут быть рассчитаны переходные процессы при возбуждении велинейных контуров. По программе БП60 рассчитывается переходный процесс

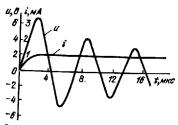


Рис. 7.15. Результаты расчета переходного процесса в параллельном LC-контуре при возбуждении его экспоненциальным перепадом тока

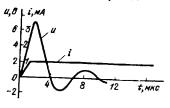


Рис. 7.16. Результаты расчета персходнего процесса в параллельном LC-контуре при возбужденин его линейно изменяющимся перепадом тока

в коитуре, изображенном на рис. 7.17, a, при нелинейной емкости, в качестве которой используется варикап. Зависимость C от u в этом случае следующая:

$$C = C_0 \sqrt{U_0/(u + \varphi_{\rm E})},$$

где C_0 — емкость C при $(u+\phi_{\rm K})=U_0;\;\phi_{\rm K}$ — контактная разность потенциалов.

Если E (t) меняется во времени, то в программах БП59 и БП60 нужно вводить соответствующее значение E (t_n) для каждого $t_n = N\Delta t$. Результат расчета переходного процесса в нелинейном последовательном LC-контуре при линейно

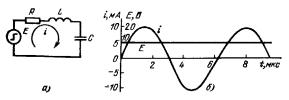


Рис. 7.17. Последовательный линейный контур ударного возбуждения (а) и пример расчета переходных процессов в нем (б)

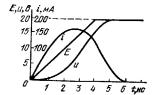


Рис. 7.18 Персходные пропессы при возбуждении нелинейного LC-контура линейно нарастающим перепадом напряжения

нарастающем до 20 В за время $t_{\Phi}=4$ нс напряжении E (t) и параметрах $C_0=20\cdot 10^{-12}$ Ф, $L=20\cdot 10^{-9}$ Гн, R=50 Ом, u (0) = 0 и t (0) = 0 приведен на рис. 7.18. Как видно из рисунка, уменьшение C (u) при переходном процессе ведет к обострению фронта входного перепада. Следовательно, нелинейный контур можно использовать для укорочения фронта импульсов, что находит применение в импульсной технике.

7.9. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА УСТАНОВЛЕНИЯ АМПЛИТУДЫ КОЛЕБАНИИ *LC*-ГЕНЕРАТОРА

Генератор синусоидальных колебаний на полевом транзисторе (рис. 7.19) или электронной лампе описывается нелинейным дифференциальным уравнением 2-го порядка [37, 38]

$$\frac{d^{2} u}{dt^{2}} + \frac{1}{L} \left[r - \frac{MS(u)}{C} \right] \frac{du}{dt} + \omega_{0}^{2} u = 0, \qquad (7.52)$$

где M — коэффициент взанмоиндукции катушек контура и связи; $\omega_0=1/\sqrt{LC}$ и принято, что выходное сопротивление активного прибора $R_i=\infty$ (его легко

пересчитать в последовательное сопротивление контура г).

В принципе уравнение (7.52) при известной нелинейной зависимости крутизны S от напряжения *и* решается численными методами. Однако известно, что при высокой добротности колебательного контура напряжение *и* (t) оказывается практически синусоидальным:

$$u(t) = U(t) \sin \omega_0 t, \qquad (7.53)$$

причем его амплитуда U(t) оказывается медленно изменяющейся по отношению h sin $\omega_0 t$ функцией. Поскольку шаг численного интегрирования должен быть заметно меньше периода высокочастотной синусоидальной составляющей u(t), то непосредственное численное решение (7.52) требует весьма большого объема вычислений и на микрокалькуляторах нецелесообразно.

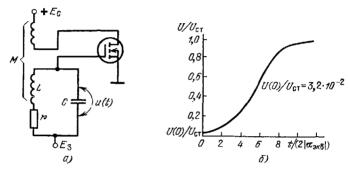


Рис. 7 19 1.С-генератор синусондальных колебаний на мощном МДП-транзисторе (а) и времениая зависимость амплитуды колебаний (в относительных сдиницах)

Если решение (7.52) заранее искать в форме (7.53), то оно приводит к аналитическим выражениям для зависимости U (t) [37, 38]. При таком подходе нелинейную зависимость тока ι_1 от u аппроксимируют неполным полиномом 3-й стенени: $\iota_1=a_0+a_1u+a_3u^3$ ($a_1>0$, $a_3<0$). Тогда S (u) = $di_1/du=a_1+3a_3u^2=S_0-3|a_3|u^2$ и уравнение (7.52) принимает вид

$$\frac{d^2 u}{dt^2} + \left(\frac{r}{L} - \frac{MS_0}{LC} + 3 \mid a_3 \mid \frac{M}{LC} u^2\right) \frac{du}{dt} + \omega_0^2 u = 0.$$
 (7.54)

Считая, что колебания возрастают медленно, решение (7 54) можно получить в виде [38]

$$U(t) = U_{\rm CT} / \sqrt{1 + \left[(U_{\rm CT} / U_0)^2 - 1 \right] \exp\left(-2 \left[\alpha_{\rm DKB} \right] t \right)}, \tag{7.55}$$

где

$$U_{\rm CT} = \frac{2}{V_{\rm 2NR}/2\alpha_{\rm 2NR}}; \quad 2\alpha_{\rm 2NR} = \frac{1/r - a_1 M/L}{C}; \quad v_{\rm 2NR} = \frac{3 \mid a_3 \mid M^3}{L^3 C}; \quad (7.56)$$

 U_0 — начальное значение амплитуды.

Расчет переходного пронесса установления амплитуды колебаний *LC*-генератора по (7.55) и (7.56) реализуется программой БПб1 (пример расчета см. на рис. 7.19, 6). Он соответствует мягкому режиму возникновения колебаний.

7.10. РАСЧЕТ РЕАКЦИИ ВИДЕОУСИЛИТЕЛЕЙ С ВЫСОКОЧАСТОТНОЙ КОРРЕКЦИЕЙ

Импульсные усилители находят широкое применение в различных радиотехнических устройствах. Усилители без коррекции имеют экспоненциальные переходные характеристики, и их аналитический или численный расчет не вызывает трудностей. Усилители с простой индуктивной коррекцией можно рассчитывать, используя программу БП55 расчета ключа при ограничении входного сигнала по амплитуде.

Видеоусилители со сложной коррекцией обычио проектируются с испольвованием известных критериев оптимальности частотных или переходных характеристик [55]. Однако при этом иеясно, к каким искажениям переходной характеристик [55].

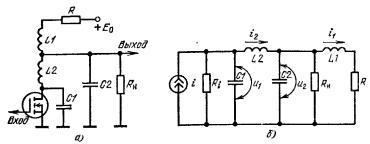
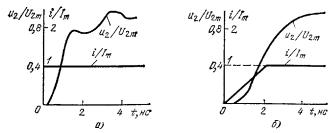


Рис. 7.20. Усилитель на полевом транзисторе со сложной коррекцией (a) и его эквивалентиая схема (б)

теристики ведет отклонение параметров коррекции от оптимальных. Кроме того, реакция таких усилителей на более сложное, чем перепад, воздействие аналитически трудно предсказуема. В связи с этим расчет реакции каскадов видеоусилителей как на простое, так и сложное воздействия численными методами представляет большой практический интерес.



Puc, 721. Результаты расчета временной зависимости выходного напряжения каскада сс сложной коррекцией при ступенчатом (a) и линейно нарастающем (b) входном перепаде

Реакция выходной цепи каскада со сложной коррекцией (рис. 7.20) на сигнал $i(t) = Su_{\rm BX}(t)$, где S — крутизна передаточной характеристики усилителя, определяется решением системы из четырех линейных дифференциальных уравнений 1-го порядка:

$$C_{1}du_{1}/dt = i - i_{2} - u_{1}/R_{1}$$

$$C_{2}du_{2}/dt = i_{2} - i_{1} - u_{2}/R_{1};$$

$$L_{2}di_{2}/dt = u_{1} - u_{2};$$

$$L_{1}di_{1}/dt = u_{2} - i_{1}R.$$

Эта система решается простым методом Эйлера по формулам.

$$u_{1n+1} = u_{1n} + (\Delta t/C_1) (\iota_n - \iota_{2n} - u_{1n}/R_i);$$

$$i_{2n+1} = \iota_{2n} + (\Delta t/L_2) (u_{1n+1} - u_{2n});$$

$$u_{2n+1} = u_{2n} + (\Delta t/C_2) (i_{2n+1} - i_{1n} - u_{2n}/R_i);$$

$$i_{1n+1} = i_{1n} + (\Delta t/L_1) (u_{2n+1} - i_{1n} R).$$

$$(7.57)$$

Для решения системы (7.57) программной памяти микрокалькулятора «Электроника БЗ-21» недостаточно. В связи с этим целесообразно рассмотрение трех частных случаев: 1) $R_i = \infty$ и $R_{\rm H} = \infty$; 2) $R_i = \infty$ и $R_{\rm H} \neq \infty$; 3) $R_i \neq \infty$ и $R_{\rm H} = \infty$. Расчеты при этих данных реализуются по программам БП62—64. На рис. 7.21 показаны расчетные реакции видеоусилителя на ступенчатый и линейно нарастающий ($t_{00} = 2$ нс) сигналы при следующих данных: $C_1 = 2.5$ пФ; $C_2 = 20$ пФ; $L_1 = L_2 = 50$ нГ; $\Delta t = 0.1$ нс; $R_i = 500$ Ом; $R_{\rm H} = \infty$ и R = 100 Ом. Как видно из приведенного примера, реакция на скачок имеет заметную колебательную составляющую, которая отсутствует при реакции на линейно нарастающий перепад конечной длительности $t_{00} = 2$ нс. Данный пример (решение системы п. четырех дифференциальных уравнений) характеризует предсл сложности подобных вычислений для микрокалькуляторов «Электроника БЗ-21».

7.11. РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛИНЕЙНЫХ ЦЕПЯХ С ПОМОЩЬЮ ИНТЕГРАЛА СУПЕРПОЗИЦИИ

Одним из широкораспространенных методов расчета переходных процессов в линейных импульсных цепях является метод, основанный на использовании интеграла суперпозиции (Дюамеля) [35, 37, 38, 56]. При этом методе на-

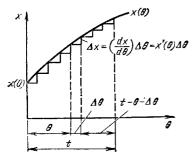


 Рис
 7 22.
 Представление кривой

 $x(\theta)$ суперпозицией скачков

ходится выходное напряжение (или ток) цепи y (t) в любой момент времени t при известных переходнои характеристике цепи α (θ) и входном сигнале x (θ). где θ — текущее время (обозначение θ введено, чтобы текущее время отличалось от заданного момента времени t).

Суть метода поясняет рис. 7.22. Заменим плавную зависимость x (θ) ступенчатой. Начальное значение x (0) создает выходной сигнал x (0) a (θ). Если в момент времени ($\theta + \Delta \theta$) возникает скачок входного сигнала, то его значыне $\Delta x \approx (ax/d\theta) \Delta \theta$. Этот скачок создает выходной сигнал, являющийся результатом умножения Δx на значение переходной характеристики, определяемое с учетом вре-

мени действия скачка до момента времени i. Это время равно $t = \theta = \Delta \theta$. Просуммировав реакции от x (0) и всех скачков, получим выходной сигнал как суперпозицию реакций цепи на все скачки.

$$y(t) = x(0) a(t) + \sum_{0}^{\theta - t} \left(\frac{dx}{d\theta}\right) a(t - \theta - \Delta\theta) \Delta\theta.$$
 (7.58)

Формула (7.58) непосредственно пригодна для численных расчетов. Если $\Delta\theta \to d\theta \to 0$, то она переходит в обычную конечную форму записи интеграла суперпориции:

$$y(t) = x(0) a(t) + \int_{0}^{t} x'(\theta) a(t - \theta) d\theta.$$
 (7.59)

Приведем также другие равноправные выражения [57]:

$$y(t) = x(0) a(t) + \int_{0}^{t} x'(t - \theta) a(\theta) d\theta;$$
 (7.60)

$$y(t) = a(0) x(t) + \int_{0}^{t} t'(\theta) x(t' - \theta) d\theta;$$
 (7.61)

$$y(t) = a(0) x(t) + \int_{0}^{t} a^{2}(t - \theta) x(\theta) d\theta.$$
 (7.62)

Применение одной из формул (7.59)—(7.62) обычно определяется условиями простоты дифференцирования входного воздействия или переходной халактеристики. Для реализации расчетов данным методом легко приспособить подходящую (прежде всего по числу шагов и свободных регистров памяти) программу численного интегрирования (см. § 2.4).

Данный метод применим при расчете реакции линейных цепей (усилителей, четырехполюсников и др.) на произвольное, заданное своими дискретными значениями, воздействие. По программе БП65, использующей для интегрирования

метод прямоугольников, вычисляется реакция цепи с экспоненциальной переходной характеристикой

$$a(\theta) = (1 - e^{-\theta/\tau}) \tag{7.63}$$

на дискретно заданные входные сигналы $u_{\rm BX}$ (t). Результат расчета выходного напряжения u (t) на графически заданное входное воздействие дан на рис. 7.23.

Если $u_{\rm BX}$ (θ) выражается аналитически, то дискретные значения $u_{\rm BX}$ (θ) можно сформировать в самой программе. Иллюстрацией к такому подходу является программа БП66, по которой вычисляется u (t) при a (θ) вида (7.63) и

 $u_{\text{BX}}(\theta) = \left(1 - e^{-\theta/\tau_{\text{BX}}}\right).$

Результат вычислений по этой программе практически совпадает с приведенным на рис. 7.23. По примеру составления этой программы можно составить программы для вычисления реакции линейных цепей на более сложные воздействия, трудно поддающиеся аналитическому расчету.

ГЛАВА 8

РАСЧЕТ И МОДЕЛИРОВАНИЕ РЕЛАКСАЦИОННЫХ ГЕНЕРАТОРОВ

8.1. РАСЧЕТ И МОДЕЛИРОВАНИЕ МУЛЬТИВИБРАТОРОВ НА ТУННЕЛЬНОМ ДИОДЕ

Автоколебагельный и ждущий мультивибраторы на туннельных диодах (рис. 8.1) являются нелинейными регенеративными импульсными устройствами высокого быстролействия. Их работа описывается системой из двух дифференциальных уравнений 1-го порядка:

$$di/dt = (E - R - u)/L; (8.1)$$

$$du/dt = (i + \iota_{3a_{11}}(t) - I(u))/C, \tag{8.2}$$

где $i_{3an}(t)$ — времениа́я зависимость запускающего токя (у автоколебательного мультивибратора $i_{3an}(t)$ = 0); I(u) — нелинейная N-образная характернстика туннельного диода (3.3). Уравнение (8.2) нелинейно, гак что данная система не имеет аналитического решения.

Для автоколебательного мультивибратора (8.1) и (8.2) решаются простым численным методом Эйлера с использованием формул:

$$i_{n+1} = i_n + (\Delta t/L) (E - i_n R - u_n);$$
 (8.3)

$$u_{n+1} = u_n + (\Delta t/C) [i_{n+1} - Au_n e^{-\alpha u_n} - D(e^{\beta u_n} - 1)].$$
 (8.4)

Расчет по (8.3) и (8.4) реализуется программой БП67, а результат примера расчета временных зависимостей i (t) и u (t) по этой программе показан на рис. 8.2 при $C=10\cdot 10^{-12}$ Ф; $L=100\cdot 10^{-9}$ Гн; $\Delta t=0,1$ нс; E=0,3В; A=0,2718; $I_{11}=10$ мА; $D=10^{-8}$ А; $U_1=0,1$ В; $\alpha=10$ 1/В и $\beta=20$ 1/В.

Программой БП68 реализуется расчет и моделирование ждущего мультивибратора по формулам:

$$u_{n+1} = u_n + (\Delta t/C) \left[i_n + i_{3a_{\Pi}}(t_n) - Au_n e^{-\alpha u_n} - De^{\beta u_n} \right]; \tag{8.5}$$

$$i_{n+1} = i_n + (\Delta t/L) (E - i_n R - u_{n+1}).$$
 (8.6)

При записи (8.5) в члене ($e^{\beta u}$ — 1) опущена единица, что ведет к очень малой погрешности в определении I(u) — порядка $D=I_{\vartheta}$. Последиее упрощает программу и уменьшает до допустимого значения число ее шагов. Результаты рас-

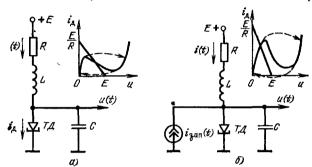


Рис. 8.1. Автоколебательный (а) и ждущий (б) мультивибраторы на туннельном диоде

чета временной зависимости при запуске мультивибратора прямоугольным импульсом даны рис. 8.3 ($R=10~{\rm Om};~u~(0)=0,095~{\rm B};~i~(0)=9,986~{\rm mA};$ остальные данные см. выше).

Расчет временных зависимостей $u\left(t\right)$ и $i\left(t\right)$, т. е. моделирование мультивибратора занимает много времени. Поэтому в инженерной практике целесообразен расчет с использованием аналитических выражений, получаемых при со-

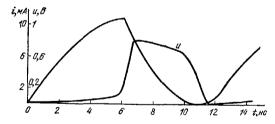


Рис. 82. Результаты расчета переходных процессов автоколебательного мультивибратора на тушнельном диоле

ответствующей аппроксимации I (и). При больших L длительность стадии роста тока от значения $I_{\rm B}$ до $I_{\rm \Pi}$ (рабочая точка на туннельной ветви ВАХ) может ыть определена ио выражениям [23]

$$t_1 = 2\tau_L \ m_1/(1 + 2m_1 e), \tag{8.7}$$

где
$$m_1 = (U_{2R} - U_{1R})/(U_{1R} - U_{0R});$$
 (8.8)

$$e = (E - U_{1R})/(U_{2R} - U_{1R});$$
 (8.9)

$$\tau_L = L (I_{\Pi} - I_{B}) / (U_{2R} - U_{1R}),$$
 (8.10)

и значения напряжений

$$U_{0R} = U_0 + I_B R$$
; $U_{1R} = U_1 + I_D R$; $U_{2R} = U_2 + I_B R$,

Результаты расчета по (8.7)—'8.10), реализуемого программой ВП69, соответствуют промежуточным результатам расчета по линейной и параболической аппроксимации туннельного участка ВАХ туннельного диода. Результаты этого расчета более близки к реальным результатам чем получаемые при расчете по указанным аппроксимациям. Для времени спада тока от значения I_{Π} до I_{B} воспользуемся выражением [23]

$$t_1 = 1.5m_2\tau_1/(1+1.5m_2(1-e)),$$

где

$$m_2 = (U_{2R} - U_{1R})/(U_{3R} - U_{2R});$$

 $U_{3R} = U_3 + I_{11}R.$

Расчет t_2 выполняется по программе БП70.

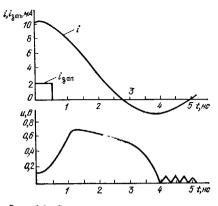


Рис. 8.3. Результаты расчета переходных процессов жлущего мультивибратора на туннельном диоде

Приближенные выражения для длительности фронта и среза выходных импульсов u (t) приведены в [22, 23, 58]. Так, для GaAs тупнельных диодов

$$t_{\Phi} \approx (0.78...\ 1) C/(I_{\Pi} - I_{B}); \quad t_{c} \approx (120...\ 134) CU_{\Pi}/I_{\Pi}.$$

Расчет по этим формулам легко провести в непрограммируемом режиме работы микрокалькулятора.

Рассмотрим пример расчета t_1 и t_2 по программам БП69 и 70. Пусть $U_{0R}=0,05$ В; $U_{1R}=0,2$ В; $U_{2R}=0,542$ В; $U_{3R}=0,77$ В; E=0,3 В; $I_{\Pi}=10\cdot10^{-3}$ А; $I_{B}=0,5\cdot10^{-3}$ А $L=100\cdot10^{-9}$ Гн; R=10 Ом. Тогда расчет дает: e=0,2924; $t_1/\tau_L=1,954$; $t_1=5,43\cdot10^{-9}$ с; $t_2/\tau_L=0,868$; $t_2=2,41\cdot10^{-9}$ с,

8.2. РАСЧЕТ РЕЛАКСАЦИОННОГО ГЕНЕРАТОРА НА ОДНОПЕРЕХОДНОМ ТРАНЗИСТОРЕ

Релаксационный генератор на однопереходном транзисторе (рис. 8.4, a) применяется как высокостабильный низкочастотный задающий автогенератор импульсных колебаний. Резистор RI иногда включается для термокомпенсации, aR2 — для съема коротких разрядных импульсов. Сопротивление зарядного резистора R выбирается из условий

$$(E-U_{\Pi})/I_{\Pi} > R > (E-U_{B})/I_{B},$$

где U_Π , U_B и I_Π , I_B — напряжения и токи пика и впадины S-образной BAX однопереходного транзистора (рис. 8.4, δ). Постоянная времени RC определяет время заряда t_3 конденсатора C, а постоянная времени $CR_P = C$ ($R_2 + R_\Pi$) (R_Π — дифференциальное сопротивление включенного прибора со стороны эмиттера) — время разряда C.

Коэффициент деления напряжения при $R_1 \neq 0$ и $R_2 \neq 0$ [59, 60]

$$\eta_R = \frac{\eta + R_2 / R_{66}}{1 + R_2 / R_{66} + R_1 / R_{66}}, \tag{8.11}$$

где η — собственный коэффициент деления транзистора; R_{66} — межбазовое сопротивление.

Напряжение пика (включения)

$$U_{\Pi} = \eta_{R} E + U_{\Pi},$$

$$\Gamma_{\Pi} = U_{\Pi} \approx m \varphi_{\Gamma} \ln \left(\ell_{\Pi} / \ell_{\Theta 0} \right)$$
(8.12)

и $I_{\ni 0}$ — обратный ток эмиттера.



Puc. 8.4. Релаксатор на однопереходном транзисторе (a) и выбор положения нагрузочной прямой зарядного резистора R (6)

Время экспоненциального заряда конденсатора C от уровня $U_{\rm B}$ до уровня $U_{\rm C}$ (рис. 8.5)

$$t_3 = RC \ln [(E - U_B)/(E - U_{II})],$$

а время разряда

$$t_{\rm n} = R_{\rm p} C \ln (U_{\rm II}/U_{\rm B})$$
.

Расчет по этим выражениям реализ) ется совмещенными программами БП71 и 72. Первая из них определяет значения η_R и $U_{\rm A}$ по (8.11) и (8.12), причем значение $m\phi_T \approx 0,050$ В вписано в программу по адресам 53—55, 60, 61. Вторая позволяет найти $U_{\rm H}$, $t_{\rm B}$, период колебаний $t_{\rm 0}=t_{\rm B}+t_{\rm p}$ скважность импульсов. $O=t_{\rm A}/t_{\rm p}$

импульсов $Q=t_0/t_{\rm p}$. В качестве примера рассмотрим расчет релаксатора на однопереходном транзисторе КТ117В с параметрами: $\eta=0.6$. $R_1=1000$ Ом; $R_2=100$ Ом; $R_6=10^4$ Ом; $I_{\rm H}=20$ мкА; $I_{\rm H}=$

8.3. РАСЧЕТ И МОДЕЛИРОВАНИЕ РЕЛАКСАТОРА НА ЛАВИННОМ ТРАНЗИСТОРЕ

Наиболее распространенная схема емкостного релаксатора на лавиннотранзисторе с общим эмиттером (рис. 8.6, a) широко приненяется в качестве не нератора импульсов с временем нарастания $t_{\Phi} \leqslant 1$ нс [26-28]. Детальный рас

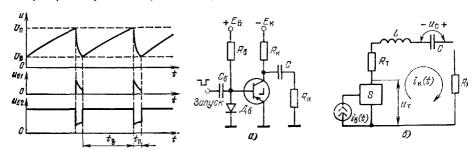


Рис. 8.5. Переходные процессы релаксатора на однопереходном транзисторе

Рис. 8.6. Схема релаксатора на лавинном транзисторе (а) и модель его разрядной цепи (б)

чет сложных переходных процессов в этой схеме весьма труден, так как требует учета ряда факторов нелинейности и инерционности В ряде случаев он выполнен на ЭВМ [28, 61]. Однако для некоторых практически важиых случаев его можно провести и с помощью микрокалькулятора.

Прежде всего отметим, что рассматриваемый релаксатор обычно использует-

ся в ждущем режиме. При этом необходимо выполнение условия

$$I_{\rm K}(0) = I_{\rm 0K} \approx (E_{\rm K} - u_{\rm C}(0))/R_{\rm K} < I_{\rm 0B} \approx E_{\rm B}/R_{\rm 0}.$$

В исходном состоянии ток базы $i_{\bf 6}$ (0) = $i_{\bf R}$ (0), а разность токов ($I_{0\,{\bf B}}-I_{0\,{\bf K}}$) протекает через открытый диод ${\cal A}_{\bf B}$. При этом конденсатор C заряжен до начального напряжения u_C (0), весьма близкого к U_M При подаче запускающего импульса ток базы обратной полярности уменьшается до нуля (или становится прямой полярности). При этом конденсатор C разряжается через лавинный траныстор и резистор нагрузки $R_{\bf H}$, на котором формируется короткий импульс. После разряда C заряд происходит по экспоненциальному закону с постоянной времени $CR_{\bf R}$. Эта стадия не представляет для расчета каких-либо трудностей. При $R_{\bf R}\gg R_{\bf H}$ значения $R_{\bf R}$ практически не влияют на процесс разряда.

При использовании в релаксаторе лавинных транзисторов с ограниченной смыканием областью объемного заряда (в частности, специальных лавинных транзисторов серии ГТ338 и большинства кремниевых планарно-эпитаксиальных)

соблюдается условие

$$\tau_{\rm T} \ll \tau_L = L/R = L/(R_{\rm T} + R_{\rm H}),$$
 (8.13)

где L — индуктивность разрядной цепи; R_{T} — последовательное активное со-

противление полностью открытого лавинного транзистора.

В этом случае можно пренебречь собственной инерционностью лавинного транзистора и представить модель разрядной цепи релаксатора в виде, показанном на рис. 8.6, б. Здесь S — нелинейный двухполюсник, динамическая ВАХ к оторого определяется формулой (3.20), если положить в ней $I_B = i_{\rm B}(t)$. Пря $\iota_{\rm B}(t) = {\rm const}$ эта характеристика совпадает со статической. Так как обычноток $I_{\rm KO}$ ничтожно мал, то им можно пренебречь и из (3.19) и (3.20) получить

$$u_{\rm T}(t) \simeq U_{\rm K3}(t) = U_{\rm M} \sqrt[n^{\bullet}]{1 - \alpha \frac{i_{\rm R} - i_{\rm G}(t)}{i_{\rm R}}}.$$
 (8.14)

Согласно рис. 8.6, б

$$\frac{d\iota_{R}}{dt} = \frac{u_{C} - Ri_{R} - u_{T}(t)}{L}, \qquad \frac{du_{C}}{dt} = -\frac{i_{R}}{L}.$$

Следовательно, используя простой метод Эйлера, временные зависимости $t_{\mathbf{R}}\left(t\right)$ и $u_{C}\left(t\right)$ можно рассчитывать по формулам:

$$t_{\rm R n+1} = t_{\rm Rn} + (\Delta t/L) (u_{\rm Cn} - R t_{\rm Rn} - u_{\rm Tn});$$
 (8.15)

$$u_{C n+1} = u_{Cn} - (\Delta t/C) i_{K n+1},$$
 (8.16)

где $u_{\mathrm{TR}}=u_{\mathrm{T}}(t_n)$ на каждом шаге вычислений определяется по (8.14). Моделирование и расчет на микрокалькуляторе релаксатора по формулам (8.14), (8.15) и (8.16) реализуются программой БП73. При расчетах по программе необходимо вводить начальные зиачения $i_{\mathrm{R}}(0)$ и $u_{\mathrm{C}}(0)$ (обычно $i_{\mathrm{R}}(0)$ = I_{OK} и $u_{\mathrm{C}}(0)=U_{\mathrm{M}}$), а временную зависимость $i_{\mathrm{G}}(t)$ учитывать вводом виачений $i_{\mathrm{G}}(t_n)$ в соответствующие моменты времени. На рис. 8.7 показаны рассчитаиные зависимости $u_{\mathrm{T}}(t)$, $u_{\mathrm{C}}(t)$ и $i_{\mathrm{R}}(t)$ при

На рис. 8.7 показаны рассчитанные зависимости $u_{\rm T}(t)$, $u_{\rm C}(t)$ и $t_{\rm R}(t)$ при вапуске релаксатора импульсом тока $i_{\rm G}(t)$, также показанным на рисунке. Расчет велся при типовых данных релаксатора на лавинном транзисторе ГТ338A:

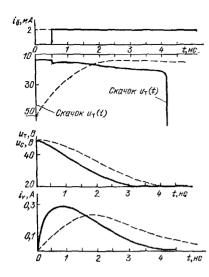


Рис. 87. Переходные процессы релаксатора на лавинном транзисторе, рассчитанные на микрокалькуляторе (— расчет методом динамического пробоя)

 $U_M = 50$ В; $\alpha = 0.98$; $n^* = 3$ (записано по адресу 22); $R_T = 15$ Ом; $R_H = 75$ Ом; R = 90 Ом (записано по адресам 41 и 42); $L = 40 \text{ H}\Gamma;$ $\Delta t = 0.1$ HC; = $2.5 \cdot 10^{-3}$ c/ $\Gamma_{\rm H}$; C = 20 $\pi\Phi$; $\Delta t/C = 5$ c/ Φ ; $i_{\rm R}(0) = 10^{-3}$ A; $u_{\rm C}(0) = 50$ В. Расчет справедлив до момента выплючения лавинного транзистора, определяемого по скачку $u_{\pi}(t)$. Обычно после скачка наблюдается неустой. чивость решения, легко отмечаемая по нереальным значениям $u_{\rm T} > u_{\rm C}$. Скачок сопереходу релаксатора в стаответствует дию заряда конденсатора С, при котором напряжение $u_{C}(t)$ экспоненциально (с постоянной времени $CR_{\rm B}$) достигает уровня $u_{C}(0)$.

Основная особенность описанной модели релаксатора — отсутствие учета собственной инерционности лавинного транзистора. Поэтому зависимость $u_{\rm T}$ (t) содержит разрывные участки спада (при выключении транзистора) и роста (при выключении транзистора). В действительности резких скачков $u_{\rm T}$ (t) не наблюдается. В то же время эта модель легко учитывает влияние временной зависимости $i_{\rm G}$ (t) на характер переходного процесса.

Если условие (8.13) не выполняется, то расчет можно выполнить более приближенным методом динамического пробоя (см. § 3.7). В этом случае модель релаксатора на стадни разряда конденсатора C представляется также в виде представленной на рис. 8.6, δ , но двухполюсник S следует рассматривать как источник перепада напряжения $u_{\mathbf{T}}(t)$ конечной длительности, причем зависимость $u_{\mathbf{T}}(t) = U_{\mathbf{K}\Theta}(t)$ определяется приближенной формулой (3.22). Расчет реализуется программой БП74. В начале программы (адреса 00—10) организуется ряд значений величны

$$(t/\tau_{\rm T})_{n+1} = (t/\tau_{\rm T})_n + (\Delta t/\tau_{\rm T})$$
,

после чего по (3.22) рассчитывается значение $u_{\rm T}$ — адреса команд 11—43. Затем по (8.15) определяется значение $i_{\rm R}$ (адреса команд 43—75) и по (8.16) — значение $u_{\rm C}$ (адреса команд от 75 до 94).

Для сравнения на рис. 8.7 даны зависимости $u_{\rm T}(t)$, $u_{\rm C}(t)$ и $i_{\rm R}(t)$, рассчитанные методом динамического пробоя ($\Delta t/\tau_{\rm F}=0.2$). Как вндно, в данном случае учет заметной инерционности транзистора ($\tau_{\rm T}=0.5$ нс) ведет к дополнительной задержке разрядного импульса, удлинению его фронта и среза, а также уменьшению амплитуды. Более детально моделирование релаксатора на лавичном транзисторе описано в [28, 61].

84. РАСЧЕТ АВТОКОЛЕБАТЕЛЬНЫХ МУЛЬТИВИБРАТОРОВ НА ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ

Одна из наиболее простых схем мультивибраторов на интегральных ТТЛ-микросхемах (рис. 8.8, a) содержит два инвертора и времязадающую RC-цепь. Длительности основных стадий переходного процесса (рис. 8.8, δ) определяются выражениями [62]:

$$\frac{t_1}{RC} = \ln \frac{2U^0 + I_{\rm BX}^1 R - U_{\rm II} - U^1}{U^0 + I_{\rm BX}^1 R - U_{\rm II}}; \qquad \frac{t_2}{RC} = \frac{R_{\rm 6.\ M\ T}}{R + R_{\rm 6\ M\ T}} \ln \frac{2U^1 - U_{\rm II} - U^0}{U^1 - U_{\rm II}},$$

где $I_{\rm BX}^{\rm I}$ — входной ток при $U_{\rm BX}>U_{\rm II};~R_{\rm 6.M.T}$ — сопротивление в цети базам многоэмиттерного транзистора, входящего в ТТЛ-микросхему.

Расчет по этим формулам реализуется программой 1 пакета БП75. Период колебаний t_0 легко найти, суммируя значения $t_1/(RC)$ и $t_2/(RC)$. При типовых для серий 155 ТТЛ-микросхем данных $U^0=0.2$ В; $U^1=3.5$ В. $U_{II}=1.4$ В; $R_{6.M.T}=1.4$ В; $R_{6.M.T$ = 1200 Om; R = 510 Om; $I_{BX}^4 = 10 \cdot 10^{-6}$ A pacyer gaer $t_1/(RC) = 1,325$;

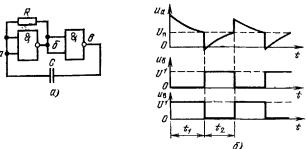
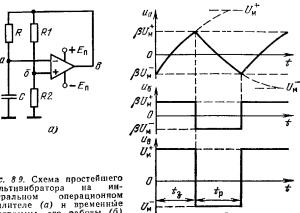


Рис. 8 8. Схема автоколебательного мультивибратора на двух логических микросхемах (а) и временные диаграммы его работы (б)

 $t_2/(RC)=0,663$ и $t_0/(RC)=1,988$. Следовательно, если нужна частота колебаний 100 к $\Gamma_{\rm H}$ ($t_0=10\cdot 10^{-6}$ с), то значение $C=t_0/(1,988R)=9,863\cdot 10^{-9}$ Ф \eqsim ~ 10 нФ.

Мультивибраторы такого типа просты, но имеют низкую стабильность $t_{m{t}}$, t_2 и t_0 , так как напряжение U^1 почти пропорционально напряжению питання, а $U_{\bf n} \approx$ const. Кроме того, $U^{\bf i}$ и $U_{\bf n}$ сильно меняются при изменении температуры. Лучшие результаты получаются при построении мультивибраторов на интегральных операционных усилителях и компараторах.



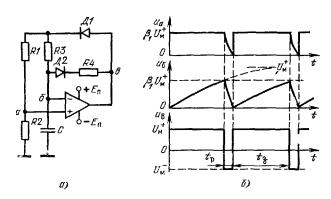
Puc. 89. Схема простейшего мультивибратора тегральном операционном усилителе (а) и временные днаграммы его работы (б)

Простейший мультивибратор на интегральном операционном уснлителе (или компараторе) помимо RC-цепи содержит резисторный делитель цепи положительной обратной связи R_1 , R_2 (рис. 8.9, a). Из анализа экспоненциальных времязадающих процессов (рис. 8.9, a) известны следующие выражения для длительности медленных стадий [62]:

$$\frac{t_{3}}{RC} = \ln \frac{U_{M}^{+} + \beta U_{M}^{-}}{U_{M}^{+} (1 - \beta)}; \quad \frac{t_{p}}{RC} = \ln \frac{U_{M}^{-} + \beta U_{M}^{+}}{U_{M}^{-} (1 - \beta)},$$

где $\beta = R_2/(R_1 + R_2)$; $U_{\rm M}^+$, $U_{\rm M}^-$ — предельные уровни выходного напряжения положительной и отрицательной полярностей.

Для расчета параметров этого мультивибратора может использоваться программа 2 пакета БП75. При типовых данных мультивибратора на микросхемах серий 140УД1 и 140УД5 ($U_{\rm m}^+=9$ В; $U_{\rm m}^-=7$ В; $R_1=R_2=10$ кОм) расчет дает $t_3/(RC)=1,022$ и $t_{\rm p'}(RC)=1,19$, т. е. различие $U_{\rm m}^+$ и $U_{\rm m}^-$ ведет к различию t_3 и $t_{\rm p}$. Поскольку $U_{\rm m}^+$ и $U_{\rm m}^-$ зависят от напряжения питания и гемпературы, стабильность $t_0=t_{\rm p}+t_3$ оказывается также невысокой (но почти на порядок лучшей, чем у мультивибраторов на ТТЛ-микросхемах).



Puc. 8.10. Схема высокостабильного автоколебательного мультивибратора на интегральном операционном усилите e(a) и временные диаграммы его работы (δ)

Высокостабильный несимметричный мультивибратор на интегральном операционном усилителе или компараторе (рис. 8.10, a) описан в [63]. В нем (с помощью диодов $\mathcal{I}I$ и $\mathcal{I}Z$) разделены цепи заряда и разряда конденсатора G, причем при заряде через резистор R напряжение переключения прямо пропорционально (коэффициент пропорциональности β_1) предельному напряжению заряда $U_{\rm M}^+$. Поэтому значение $U_{\rm M}^+$ не влияет на время t_3 . Анализ переходных процессов (рис. 8.10 G) дает следующие выражения для длительности медленных стадий [63]:

$$\frac{t_3}{R_3 C} = \ln \frac{1}{1 - \beta_1}; \quad \frac{t_p}{R_3 C} = \frac{1}{1 - \beta_2} \ln \left[1 + \frac{U_M^+}{U_M^-} \beta_1 (1 - \beta_2) \right],$$

THE $\beta_4 = R_4 (R_1 + R_2 + R_3); \quad \beta_1 = R_2/(R_1 + R_2).$

Расчет по этим формулам выполняется по программе 3 пакета БП75. При указанных в [63] данных ($R_1=16$ кОм; $R_2=27$ кОм; $R_3=43$ кОм; $R_4=-0.68$ кОм; U_3^+ , U_3^- = 1.5; микросхема 140УД1) получаем $t_3/R_3C=0.465$; $t_p/R_4C=0.444$; $\beta_1=0.372$; $\beta_2=7.91\cdot10^{-3}$. Так как $R_3\gg R_1$, то $t_3\gg t_p$ и $t_0\approx t_3$. Нестабильность t_3 такого мультивибратора не превышает $\pm 0.3\%$ при изменении питающих напряжений на ± 10 и $\pm 0.1\%$ при изменении гемпературы от 20 до 60° С (эти нестабильности мультивибратора со схемой на рис. 8.9 составляют примерно ± 2 и 1%, т. е. почти на порядок больше).

В ряде случаев чеобходимы мультивибраторы с управляемой внешинм строб-импульсом генерацией. Такой мультивибратор (рис. 8.11, a) [64] генерирует колебания только в том случае, если $U_{\rm BX} > U_0$. При $U_{\rm BX} < U_0$ на выходе будет «высокое» напряжение $U_{\rm H}$. Это достигается построением мультивибратора на сдвоенном интегральном компараторе, на выходе которого установлена логическая микросхема. Компаратор KI используется для стробирования выход-

 $\mathbf{F} \simeq \mathrm{cur}$ нала. K2 — нижний — для построения собственно мультивибратора. \mathbf{P} режим» автоколебаний (рис. 8.11, δ) [64]

$$\frac{t_3}{CR_3} = \ln \frac{U_l - U_H}{U_h - U_H}; \frac{t_p}{CR_4} = \ln \frac{U_h - U_H}{U_l - U_L},$$

гле $U_h = U_H R_1/(R_1 + R_2);$ $U_l = U_L R_1/(R_1 + R_2);$ $U_H = U_s - 0.75$ [B]; $U_s -$ напряжение на входе стробирования; U_H , $U_L -$ верхний и нижний уррани выходного напряжения; U_h , $U_l -$ соответствующие им пороги переключения, задаваемые делителем R1, R2.

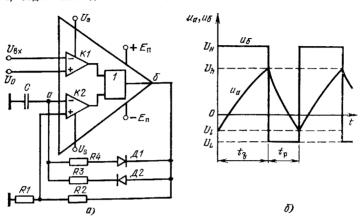


Рис. 8.11. Схема мультивибратора с управляемой генерацией на интегральном компартторе (а) и временные диаграммы его работы в автоколебательном режиме (б)

Расчет по этим формулам можно проводить, используя программу 4 пакета БП75 Взяв типовые данные (компаратор 521СА1. $R_1=R_2=10$ кОм: $U_H=4,25$ В; $U_L=-1$ В), получим $t_3/R_3C=0,8044$ и $t_{12}/R_1C=1,8326$ При $R_3=R_4$ полупериоды существенно различны $(t_3 < t_{\rm p})$ так как различны уровни U_H и U_L

8.5. РАСЧЕТ ЖДУЩИХ МУЛЬТИВИБРАТОРОВ НА ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ

Ждущие мультивибраторы используются в качестве генераторов и формирователей почти прямоугольных импульсов с заданными длительностью амплитудой и длительностями фронта и среза. Последовательность их расчета практически аналогична описанной в \$8.4 для автоколебательных мультивибраторов. Спецификой проектирования ждущих мультивибраторов обычно является определение порога запуска, т. е. минимальной амплитуды запускающих импульсов заданной длительности. При построения мультивибраторов возической импульсов заданной длительности. При построения мультивибраторов возинегральных логических микросхемах этог важный параметр однозначно определяется порогом переключения $U_{\rm n}$ и задержкой $t_{\rm 3}$ микросхемы, т. е. его рассчитывать не гребуется. Точный расчет, как правило, необходим для длительности выходного импульса Время восстановления ждущих мультивибраторов допустимо рассчитывать с большой (до 10-20%) погрешностью, что упрощает расчеты — в расчетных формулах можно не учитывать второстепенные параметры (малые входные токи микросхем, малое напряжение U^0 и т. д.).

В простейшей схеме ждущего мультивибратора (рис. 8.12, а) [65] использованы два инвертора (ТТЛ-микросхемы) и времязадающая *RC*-цепь. Анализ

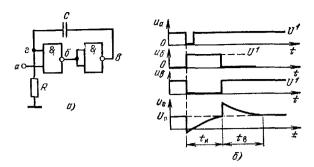


Рис. 8 12. Схема ждущего мультнвибратора на двух логических микросхемах (а) н времен име днаграммы его работы (б)

временных диаграмм (рис. 8.12, δ) дает следующие выражения для длигельности формируемого импульса t_{tt} и времени восстановлення t_{tt} :

$$\frac{t_{\rm H}}{RC} = \frac{R_{\rm 6. MT}}{R + R_{\rm 6. MT}} \ln \left(1 + \frac{U^{1} - U^{0}}{E_{\rm 9KB} - U_{\rm II}}\right),$$

$$\frac{t_{\rm B}}{RC} = \ln \left(1 + \frac{U^{1} - U^{0}}{U_{\rm II}}\right),$$

rne

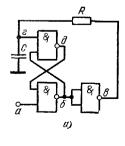
$$E_{\text{BRB}} = R (E = 0.7 \text{ [B]})/(R + R_{6 \text{ M-T}}).$$

Вычисления по этим формулам реализуются программой 1 пакета БП76. При типовых данных (R=2 кОм; $R_{6,M,T}=1,2$ кОм; $U^1=3,5$ В; $U^0=0,2$ В; $U_1=1,4$ В и E=5 В) получаем $t_{11}/(RC)=0,476$; $t_{12}/(RC)=1,211$. Отсюда по заданным t_{11} и R нетрудно найти нужное значение C. Заметим, что величина R в этой схеме должна удовлетворять условию

$$R > U_{\Pi}/I_{\rm BX}^{\Pi}$$

где $I_{\rm BX}^{\rm n}$ — входной ток микросхемы перед ее переключением из состояния логического 0 на выходе в состояние логической 1 (1 мА для ТТЛ-микросхем серий 133 и 155).

Недостатком рассматриваемого мультивибратора (см. рнс. 8.12, a) является то, что пиковые значения напряжения в точке e близки к предельно допустимым и могут превысить последние. Поэтому широкое применение находят мультивибраторы, построенные на основе RS-триггера с интегрирующей хронирующей RC-цепью (рис. 8.13, a). В них после запуска напряжение в точке e (рис. 8.13, e) меняется от уровия e0 до e1.



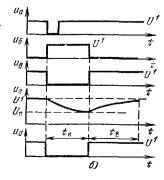
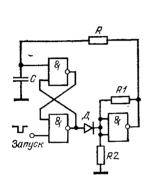


Рис. 8.13. Схема ждущего мультивибратора на основе RS-триггера (а) и временные диаграммы его работи (б)

$$\frac{t_{\rm R}}{RC} = \ln \frac{U^0 - U^1}{U^0 - I_{\rm BX}^1 R - U_{\rm II}}; \ t_{\rm B} \approx 3RC. \tag{8.17}$$

Расчет по (8.17) проводится с использованием программы 2 пакета БП76. При указанных выше типовых данных и R=510 Ом (здесь нужно выбирать $R < U_{\rm n}/I_{\rm BX}^{\rm n}$) получим $t_{\rm N}/RC=1,007$, т. е. значение, близкое к значению постоянной времени RC-цепи.

Общим недостатком описанных схем является низкая стабильность $t_{\rm H}$ (изменения $t_{\rm H}$ достигают 10-20% при изменении питающего напряжения E на $\pm 10\%$ ($\Delta E \approx \Delta U^1$ и температуры от +20 до $+60^\circ$ C) В [66] предложена новая модификация высокостабильного мультивибратора (рис. 8.14). Ее отличи-



R Wuna paspada

Rp R1 WK1

R2 WK2

3anyck

R3 MC maumepa

Строб-импильс

Рис. 8.14. Схема высокостабильного ждущего мультивибратора на логических микросхемах

Рис. 8.15. Схема высокостабильного ждущего мультивибратора на основе интегрального таймера

тельной особенностью является охват третьего инвертора нелинейной отрицательной обратной связью, осуществляемой через резисторный делитель R1, R2 Если бы коэффициент усиления инвертора в линейном режиме K_U был равен ∞ , то на выходе его устанавливалось бы напряжение

$$U_{\text{oc}}^1 = U_{\text{II}} (R_1 + R_2) / R_2.$$
 (8.18)

При $U^0 \approx 0$ и $I^1_{\rm Bx} \approx 0$ из (8.17) и (8.18) получаем

$$t_{11}/(RC) = \ln [(R_1 + R_2)/R_2] = \text{const},$$
 (8.19)

если все три инвертора идентичны (они должны быть в составе одной микроске-мы).

Более точный анализ, учитывающий конечное значение K_U и входной ток инвертора, дает для $U_{\rm oc}^{_1}$ выражение [67]

$$U_{\text{oc}}^{1} = \frac{U_{\text{II}} K_{U} - I_{\text{BX}}^{n} R_{1}^{2} R_{2} / (R_{1} + R_{2})}{1 + K_{U} R_{2} / (R_{1} + R_{2})}.$$
 (8.20)

Значение $t_{\rm II}$ определяется по (8.17) при замене в ней $U^{\rm I}$ па $U_{\rm oc}^{\rm I}$. Расчет по (8.17) п (8.20) реализуется по программе 3 пакета БП76. При $R_1=R_2=R=510$ Ом; $K_U=40;~U_{\rm II}=1.4$ В; $I_{\rm ex}^{\rm II}=10^{-3}$ А; $U_{\rm o}=0.2$ В и $I_{\rm ex}^{\rm II}=10\cdot10^{-6}$ А расчет даст значение $t_{\rm II}/(RC)=0.716$. Заметим, что при $K_U=\infty$ согласно (8.19) $t_{\rm II}/(RC)=1$ п 2=0.693. При изменении $E_{\rm II}$ на \pm 10% изменение $t_{\rm II}$ составляло по данным эксперимента \pm 0.3 ... — 0.8%, а при изменении температуры (\pm 20 ... \pm 60° C) не более 1.5% [67].

В последнее время получают распространение специальные микросхемы, предназначенные для формирования импульсов стабильной длительности — интегральные таймеры [68, 69] В типовой схеме ждущего мультивнбратора на основе таймера (рис. 8.15) реализуется мостовой принцип стабилизации $t_{\rm H}$. При нем пороговое напряжение переключения $U_{\rm nl}$, задаваемое интегральным компаратором UKI, прямо пропорционально напряжению питания E хронирующей RCнепи. Это достигается заданием $U_{\rm nl}$ с помощью делителя из резисторов RI, R2, R3 с одинаковыми сопротивлениями

$$U_{\text{ui}} = \eta_1 E = \frac{R_2 + R_3}{R_1 + R_2 + R_2} E \approx 0,666E$$
.

Высокая идентичность номиналов резисторов достигается интегральной технологией изготовления. Другое пороговое напряжение

$$U_{\text{TI2}} = \eta_2 E = R_3 E/(R_1 + R_2 + R_3) \approx 0.333E$$

определяет порог запуска мультивибратора.

При запуске интегральный компаратор UK2 переводит триггер T в такое состояние, при котором запирается ключевой гранзистор таймера. Конденсатор C заряжается через резисторы $(R,\,R_{\rm P})$ от начального уровня $U^0\leqslant 0.05$ В до уровня $U_{\rm III}$ при предельном уровне

$$u_C(\infty) = E - I_{\text{HX}}(R + R_p)$$
,

где I_{вх} — малый входной ток компаратора *ИКІ* Следовательно.

$$\frac{t_{\rm R}}{RC} = \ln \frac{E - t_{\rm BX} (R + R_{\rm p}) - U^{\rm o}}{E - t_{\rm BX} (R + R_{\rm p}) - \eta_{\rm b} E}.$$
 (8.21)

Время восстановления $t_{\rm B} \approx 3CR_{\rm D}$

Малые значения U^0 и $I_{\rm BX}$ интегральных таймеров позволяют получать значения $t_{\rm H}/(C~(R~+R_{\rm p}))$, весьма близкие к идеальному значению $\ln 3=1,0986=$ 00 соля. Не зависящему от E Расчет по (8.21) с помощью программы 4 пакета БП76 дает $t_{\rm H}/(C~(R~+R_{\rm p}))=1,09328$ при $E=15~{\rm B}$; $I_{\rm BX}=10^{-9}~{\rm A}$, $U^0=0,05{\rm B}$ и $R~+R_{\rm p}=100~{\rm кOM}$ Эго значение отличается от идеального в третьем знаке после запятой, что указывает на высокую стабильность $t_{\rm H}$

Схемы ряда других мультивибраторов и расчетные выражения для них можно наити в литературе [62—72].

глава 9

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И МАКРОМОДЕЛИРОВАНИЕ РАДИОЭЛЕКТРОННЫХ СИСТЕМ И УСТРОЙСТВ

9.1. РАСЧЕТ ЧУВСТВИТЕЛЬНОСТИ К ИЗМЕНЕНИЯМ ПАРАМЕТРОВ

При проектировании радиоэлектронных устройств весьма важен анализ чувствительности их выходных параметров y_i к изменениям или разбросу внешьнх и внутренних параметров x_i , совокупность которых обозначим через Π .

В общем случае параметр

$$y_i = f(x_1, x_2, ..., x_i, ..., x_k) = f(\Pi),$$
 (9.1)

где под $x_1 \dots x_k$ подразумеваются такие параметры, как напряжения, токи, сопротивления резисторов, емкости конденсаторов и т. д. Разложив (9.1) в ряд Тейлора, получим

$$\Delta y_{i} = \frac{\partial f(\Pi)}{\partial x_{1}} \Delta x_{1} + \frac{\partial f(\Pi)}{\partial x_{2}} \Delta x_{2} + \ldots + \frac{\partial f(\Pi)}{\partial x_{i}} \Delta x_{i} + \ldots + \frac{\partial f(\Pi)}{\partial x_{k}} \Delta x_{k}.$$

Коэффициенты перед абсолютными приращениями параметров x_1, x_2, \dots, x_i называются абсолютными коэффициентами нестабильности Так, при изменении x_i абсолютный коэффициент нестабильности

$$A_{i} = \partial f(x_{1}, x_{2}, ..., x_{i}, ..., x_{h})/\partial x_{i} \approx \Delta f(\Pi)/\Delta x_{i}. \tag{9.2}$$

Нередко используются **б**езразмерные относительные коэффициенты нестабильности, например

$$S_{i} = \frac{\partial f(\Pi)/f(\Pi)}{\partial x_{i}/x_{i}} \simeq \frac{\Delta f(\Pi)/f(\Pi)}{\Delta x_{i}/x_{i}}.$$
 (9 3)

Тождества Δf (П) = ∂f (П) и $\Delta x_i = \partial x_i$ справедливы лишь при линейной зависимости f (П) от параметра x_i . Иногда (см. § 4.3, 4.4) коэффициенты нестабильность определяются аналитически. В большинстве случаев, однако, эта зависимость нелинейная, указанные тождества оказываются неточными при реальных изменениях x_i и f (П) и расчет A_i п S_i упрощается при использовании ЭВМ.

Из множества возможных методов расчета чувствительности на ЭВМ [73—75] для микрокалькуляторов наиболее приемлем простейший — метод малых приращений x_i . При этом методе параметру x_i задают малое приращение Δx_i и находят Δf (П) при постоянных других параметрах. Затем по формулам (9.2) и

(9.3) находят A_i и S_i .

Выбор Δx_i противоречнь. При двух значениях x_i , определяющих $\Delta x_i = x_{i1} - x_{i2}$, получаем Δf (П) = f (П)₁ — f (П)₂. При близких f (П)₁ и f (П)₂ их разность может вычисляться с большой погрешностью. В общем случае увеличение Δx_i приводит к увеличению погрешности из-за нелинейности f (П). Полезно задавать два значения $\Delta x_i -$ положительное и отрицательное. Если $|-\Delta f$ (П)| = Δf (П), то нелинейность сказывается слабо и можно увеличить Δx_i . Значения A_i и S_i при этом целесообразно вычислять как средние при расчете по приращениям $+\Delta x_i$ и $-\Delta x_i$. Для иллюстрации рассчитаем чувствительность длительности импульса

Для иллюстрации рассчитаем чувствительность длительности импульсь $t_{\rm H}$ релаксатора на однопереходном транзисторе (см. рис. 8.4, a) к измененик параметров R, C и η при $R_1=R_2=0$. Для $t_{\rm H}$ имеем выражение

$$t_{\rm n} = RC \ln (1 - \eta)^{-1}. \tag{9.4}$$

Пусть R=100 кОм; C=10 нФ и $\eta=0.66$. При точных значениях этих параметров $t_{\rm R}=t_{\rm H0}=1,0788\cdot 10^{-3}$ с. Зададимся $\Delta R=1$ кОм, т. е возьмем R=101 кОм При этом $t_{\rm H}=1,0896\cdot 10^{-3}$ с. Следовательно, $A_R=1,08\cdot 10^{-6}$ с/кОм Аналогично, взяв $\Delta C=1$ нФ, получим $A_C=1,08\cdot 10^{-4}$ с/нФ.

Из (9.4) следует, что зависимость $t_{\rm H}$ от R и C линейна. Так что выбор ΔR и ΔC произволен. Однако зависимость $t_{\rm H}$ от η нелинейна. Допустим, что изменения η составляют \pm 10%, τ . е. $\Delta \eta = \pm$ 0,066. Задав приращение $\Delta \eta$ положительным, а затем и огрипательным, получим $A_{\eta}^+=3,27\cdot 10^{-3}$ с и $A_{\eta}^-=2,69\times 10^{-3}$. Различие A_{η}^+ и A_{η}^- не очень большое, но указывает на нелинейность зависимости $t_{\rm H}$ от η . В интервале изменения η на \pm 10% более точно принять среднее значение $A_{\eta}=(A_{\eta}^++A_{\eta}^-)/2=2,98\cdot 10^{-3}$ с. Относительные коэффициенты нестабильности в данном примере $S_R=S_C=1;\ S_{\eta}=1,823$

Зная коэффициенты нестабильности, легко вычислить абсолютные и относительные изменения выходных параметров при заданных малых изменениях внешних и внутренних параметров. Так, в данном примере

$$\Delta t_{\mathbf{H}} = A_R \, \Delta R + A_C \, \Delta C + A_{\mathbf{\eta}} \, \Delta \eta;$$

$$\Delta t_{\mathbf{H}} \, t_{\mathbf{H}^0} = S_R \, \Delta R / R + S_C \, \Delta C / C + S_{\mathbf{\eta}} \, \Delta \eta / \eta. \tag{9.5}$$

Описанная методика расчета применима при любых изменениях параметров: вследствие технологического разброса, из-за изменения температуры, частоты и т. д. Проиллюстрируем это следующим примером. Пусть требуется определить величины $\delta_{tn} = \Delta t_u/t_{n0}$ при изменении температуры схемы на 1° C, если применен резистор R с температурным коэффициентом изменения сопротивления $\tau_{tn} = 100 \cdot 10^{-6}$ С, конденсатор C с температурным коэффициентом емко-

сти — $150 \cdot 10^{-6}$ 1/° С и однопереходный транзистор с температурным коэффициентом δ_{η} — $25 \cdot 10^{-6}$ 1/° С Используя (9.5), получаем $\Delta t_{\rm H}/t_{\rm H0} = 1 \cdot 100 \cdot 10^{-6}$ — $-1 \cdot 150 \cdot 10^{-6}$ + $1,823 \cdot 25 \cdot 10^{-6}$ = — $4,425 \cdot 10^{-6}$ 1/° С. Малое значение $\delta_{\it th}$ в данном случае получено благодаря частичной взаимной компенсации нестабильности R, η и C

Описанный метод легко приспособить к расчету диапазона изменения выходных параметров при заданных диапазонах изменения внешних и внутренних параметров Если берутся максимальные отклонения параметров x_t , ведущие к максимальному изменению y_t , то выполняется расчет на наихудший случай. Следует отметнть, что такое отклонение всех параметров x_t в худшую сторону маловероятно.

9.2. ОСНОВЫ СТАТИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ И РАСЧЕТА РАДИОЭЛЕКТРОННЫХ УСТРОЙСТВ (МЕТОД МОНТЕ-КАРЛО)

При расчете на наихудший случай игнорируется статистический характер изменения параметров устройств Это ведет к неоправданному ужесточению допусков на параметры, усложнению настройки и регулировки аппаратуры, снижению процента выхода годных изделий, а иногда ошибочно указывает на негозможность создания аппаратуры с требуемыми выходными параметрами

В связн с эгим на практике нередко прибегают к испытаниям большой партии готовых устройств с последующей статистической обработкой полученных результатов (см § 9 3) Такой метод называется статистическим экспериментальным методом анализа — Его недостатком является то, что он применим на заключительных стадиях разработки (когда аппаратура нли ее узлы уже разработаны), весьма трудоемок, требует больших материальных затрат на проведение экспериментальных работ и последующую доводку аппаратуры В связи с этим перспективны автоматизированные методы статистического моделирования [8, 74—76] основанные на заимствованном из теории игр методе Монте-Карло [8—77]

При мегоде Монте-Карло входные и другие воздействия моделируются на ЭВМ. С этой целью создаются датчики случайных чисел с равномерным распределением, из которых затем формируются числа с иными требуемыми законами распределения (см § 9.4). Эти числа используются как эквиваленты входных воздействий, внутренних параметров схем и т. д. Затем многократно рассчитываются выходные параметры по математической модели устройства На заключительной стадии выполняется статистическая обработка полученных результатов Итогом моделировання могут быть гистограммы разброса выходных параметров, расчетные данные о рабогоспособности устройства, оценка его реакцип на сложные сигпалы (с помехами) и т. д.

Таким образом, метод Монте-Карло позволяет оценить на ЭВМ работу усгройств при самом различном сочетании их внешних и внутренних параметров с учетом их статистических характеристик В отличие от экспериментального статистического метода, данный метод применим на пачальном этапе проектиро вания устройств, позволяет резко уменьшить объем трудоемких экспериментальных исследований, уменьшить затраты на приобретение лабораторного оборудования, задать такую совокупность параметров, которую трудно или рискованно задавать при эксперименте.

Статистическое моделирование на ЭВМ имеет и недостатки. Для его реализации нужны корректные и аппробированные (иногда сложные) математические модели устройств. При малой погрешности расчетов (0,1—0,001%) требуется очень большое число испытаний N (многие тысячи) Однако при обычно приемлемой на практике погрешности моделирования 1—5% необходимое число испытаний сокращается до 100—500 [8]. Это позволяет в некоторых случаях реализовать статистическое моделирование с помощью программируемых микрокалькуляторов Возможности его резко увеличиваются при реализации на современных микро- и мини-ЭВМ с большой скоростью вычислений.

9.3. РАСЧЕТ ОСНОВНЫХ СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК

Важнейшей статистической характеристикой является вероятность событич (изпример, появления величины x_n) P. Если при общем числе условий возникновения события N оно появляется при K условиях, то P = K/N. Плотность вероятностей можно оценить частотой появления случайной величины x_n в интервале dx, т. е. функцией f(x). Интеграл от этой функции

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

называется функцией распределения вероятности.

Обычно случайные числа заданы массивом из N случайных ретичин K важнейшим характеристикам такого массива относятся начальные

$$m_k(x) = \frac{1}{N} \sum_{n=1}^{N} x_n^k \quad (k=1, 2, ...)$$

и центральные

$$M_k(x) = \frac{1}{V} \sum_{n=1}^{N} [x_n - m_1(x)]^k \quad (k=2, 3, ...)$$

моменты k-го порядка. Как правило, ограничиваются рассмотрением моментов до 4-го порядка включительно. Момент $M_1(x)=0$.

Вычисление начальных моментов легко организовать по мере ввода чисел x_n (n от 1 до N) с накоплением сумм величнн x_n^k в соответствующих регистрах памяти ЭВМ. Сложнее вычислять M_h (x), так как в формулы для центральных моментов входит первый момент m_1 (x), определяемый после ввода всех x_n Чтобы избежать запомннания всех x_n или их повторного ввода, целесообразно воспользоваться известными выраженнями [2, 10], позволяющими вычислить центральные моменты через начальные (для простоты записи далее опускаем x в скобках):

$$M_2 = m_2 - m_1^2;$$

$$M_4 = m_4 - 3m_1 m_2 + 2m_1^3 = m_3 + m_1 (2m_1^2 - 3m_2);$$

$$M_4 = m_4 - 4m_1 m_3 + 6m_1^2 m_2 - 3m_1^4 = m_4 + 4m_1 \left[\frac{3}{4} m_1 (2m_2 - m_1^2) - m_3 \right].$$

Основными статистическими характеристиками массива x_n считаются: среднее значение \overline{x} , дисперсия D, асимметрия S и эксцесс E. Среднее значение — первый начальный момент —

$$m_1 = \bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

характеризует математическое ожидание (или наиболее вероятное значение) величины x. Дисперсия

$$D = \sigma^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x}) = M_2$$

марактеризует вероятную степень отклонения случайной величины от се математического ожидания. При этом величина $\sigma = \sqrt{D}$ является стандартным отклонением (или средней квадратической погрешность.о).

Для нормального распределения (см. § 9.4) дисперсия оказывается смешенпой Несмещенная дисперсия определяется выражением

$$D_0 = \sigma_{N-1}^2 = M_2 N/(N-1)$$
.

Асимметрией является нормированный относительно дисперсии центральный момент **3**-го порядка

$$S = \frac{1}{ND^{3/2}} \sum_{n=1}^{N} (x_n - \overline{x})^3 = M_3 / M_2^{3/2}.$$

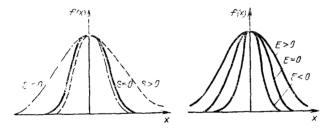
Асимметрия указывает на характер скошенности графика функции f(x) (рис. 9.1). При S=0 кривая f(x) симметрична, при S>0 выгянута правая, а при S<0 — левая спадающая часть этой кривой Искажения формы оцениваются относительно формы при нормальном распределении Эксцесс является показателем «сгруппированности» случайных велични вокруг среднего значения

$$E = \frac{1}{ND^2} \sum_{n=1}^{N} (x_n - \overline{x})^4 = \frac{M_4}{M_2^2} - 3$$

и чарактеризует степень заостренности пика кривой f(x) (относительно кривой

при нормальном распределении).

С помощью программы БП77 вычисляются четыре начальных момента, средное значение и дисперсия D_0 массива N вводимых в микрокалькулятор «Электроника Б3-21» чисел. Ее первая часть (до команды с адресом 50) служит для вычисления N, x_n^2 , x_n^3 и x_n^4 , а также накопления сумм x_n и трех последних величин в регистрах памяти $P2 \dots P5$. По окончании ввода запускается вторая четь программы (пажатием клавиш БП P5 С/П) и вычисляется значение (N-1) = P7 и $x-m_1=P2=PX$ (до команды с адресом 61). При еще одном



Puc. 91. Вид кривых распределения случайных чисел при разных S и E

нажатии клавиши C/Π вычисляются $m_1^2=P8$ и $D_0=PX$. Для вычислення D в конце расчета D_0 следует нажать клавиши \uparrow $F7 \times \uparrow$ $F6 \div C$ целью облегчения ввода x_n предусмотрен вывод на индикацию номера каждого введенного числа после его обработка Обработка одного числа занимает около 5 с

Для вычисления S и E служит программа БП78, которая вводится после программы БП77 и является ее продолжением. Минимизация числа шагов этой программы достигнута преобразованием формул для M_3 и M_4 и рациональным

использованием регистров намяти микрокалькулятора.

Наглядное представление о виде функции f(x) дают гистограммы распределения величин x_n в заданных интервалах Δx . Программа БП79 служит для автоматического подсчета числа значений x_n , попадающих в следующие интервалы (числа хранятся в регистрах $P2 \dots P7$) x < 5 (P2); $5 \le x < 6$ (P3); $6 \le x < 7$ (P4); $7 \le x < 8$ (P5); $8 \le x < 9$ (P6); 9 < x (P7). Левая граница интервала $x_n = 5$ может быть изменена путем записи по адресам 05 п 10 вместо числа 05 другого значения $x_n \le 99$ В общем случае числа x_n следует нормировать

(yмиожая их на константу K и суммируя с константой S), чтобы полученные

значения попали в указанные пределы. Число значений x_n подсчитывается с помощью операций условных переходов. Вначале величина x_n-x_n сравнивается с 0. Если $x_n-x_n<0$, т. е $x_n < x_n$, то происходит прибавление 1 к содержимому регистра памяти Р2 и возврат к адресу 02 (началу программы). Если $x_n - x_n > 0$, то проверяется условие $(x_n-x_n-1)<0$; если оно не выполняется, то проверяется условие $(x_n-x_n-2)<0$ и т. д. При этом 1 прибавляется всегда к содержимому толь ко того регистра, который соответствует интервалу Δx , в который попадает данное значение x_n . Время обработки одного отсчета составляет от 2 до 5 с (в зависимости от значения x_n).

Большее число регистров памяти и шагов программы микрокалькуляторя «Электроника Б3-34» позволяет вычислять все перечисленные статистические параметры по одной программе ПП13/34 (см. приложение 2). При этом переход от накопления данных к расчету осуществляется автоматически после ввода

последнего числа x_N .

Еще большие возможности автоматизации статистических расчетов откры вают микро-ЭВМ, в частности «Электроника ДЗ-28». В ее математическое обеспечение включена программа статистических расчетов. Пакет программ содержиг программу ПП10/28, по которой рассчитываются среднее, дисперсия, асимметрия эксцесс и осуществляется накопление данных для построения гистограмм при 20 интервалах с произвольно заданными границами. По этой программе вычисляются также коэффициенты

$$\alpha_{S} = \sqrt{\frac{6 (N-1)}{(N+1) (N+3)}}; \quad \alpha_{E} = \sqrt{\frac{24N (N-2) (N-3)}{(N-1)^{2} (N+3) (N+5)}}.$$

Если S и E меньше $2\alpha_S$ и $2\alpha_E$ то можно считать, что закои распределения случайных чисел близок к нормальному.

В микро-ЭВМ «Электроника ДЗ-28» и в настольный микрокалькулятор «Электроника МК-46» числа могут вводиться с внешних периферийных уст ройств, например аналого-цифровых преобразователей Это открывает возможности применения этих микро-ЭВМ в автоматических системах сбора и статистической обработки информации

9.4. ФОРМИРОВАНИЕ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ С ЗАЛАННЫМ ЗАКОНОМ РАСПРЕДЕЛЕНИЯ

Для имигации параметров радноэлектронных систем и устройств широко применяются равномерно распределенные случайные числа. Они заключены в интервале от 0 до 1 с одинаковой вероятностью любой их величины в этом интервале. Источниками таких чисел служат специальные физические датчики, таблицы случайных чисел, их получают различными программными способами. В последнем случае речь идет о повторяющихся больших последовательностях случайных чисел с равномерным распределением, т. е. псевдослучайных чисел. Приставку «псевдо» будем опускать, помня, однако, о таком характере программно формирусмых чисел. Рассмотрим некоторые методы формирования случайных чисел [2, 10 77, 78]

Метод Неймана получения случайных чисел с равномерным распределением заключается в возведении p-разрядного числа V_n в квадрат, причем из середины цифровой последовательности результата V_n^2 выделяют p цифр, образующих новое число V_{n+1} , и т д. Другой метод заключается в таком выделении середины ряда цифр произведения $V_{n-1}V_n$. Апериодичность последовательности,

т. е. число неповторяющихся чисел L, мала и составляет $L < 2^{
ho}$.

Метод Коробова основан на вычисленни случайных чисел по формуле

$$U_{n+1} = (qV_n)_{\text{mod } p}$$
,

где p — большое простое число (2027, 5087 и т. д.), а q берется близким к p/2 из миожества число $p-3^m$ (где m — целое число). Большое число параметров (p, q, m) является недостатком этого метода, программная реализация которого на микрокалькуляторах описана в [2]. Кроме того, получаемые случайные числа распределены в интервале [1, p — 1], и их для приведения в интервале [0, 1] следует дополнительно делить и p.

Более простой мультипликативный метод реализуется формулой

$$V_{n+1} = (AV_n)_{AP}$$
,

где $k=8t\pm 3={\rm const};~(kV_n)_{\rm RP}$ — дробная часть произведения kV_n , t — нелое число. В дальнейшем взято $k=(8\cdot 5-3)=37$. Получающиеся случайные числа равномерно распределены в интервале 0, 1. Их можно привести в интервал [a,b], применив формулу пересчета каждого числа: $X_n=a+(b-a)V_n$.

По программе 1 пакета ВП80 реализуется этот метод. Дробиая часть произгедения] $37V_n$ отделяется фрагментом программы (P2 1 ВП 7 ХҮ + ХҮ — / — / \uparrow F2 +), описанным в § 1.5. Согласно программе выдаются числа $V_n \times [0, 1]$ и X_n [a, b] после ввода a, b и начального случайного числа V_0 (любое нечетное число менее 1, например 0,37843). Приведем 50 случайных чисел (округленных на третьем знаке после запятой), полученных с помощью этой программы: 0,378; 0,002; 0,071; 0,615; 0,747; 0,648; 0,958; 0,441; 0,324; 0,989; 0,597; 0,092; 0,389; 0,387; 0,308; 0,406; 0,022; 0,8; 0,612; 0,624; 0,102; 0,79; 0,227; 0,368, 0,311; 0,516; 0,074; 0,733; 0,128; 0,737; 0,273; 0,103; 0,833; 0,815; 0,144; 0,338; 0,506; 0,708; 0,207; 0,676; 0,026; 0,978; 0,183; 0,759; 0,075; 0,784; 0,99; 0,625; 0,132; 0,885.

Случайные числа с иными законами распределения можно получить с помощью соответствующих уравнений преобразования (табл. 9.1), например по

Таблица 9.1 Законы распределения случайных чисел и уравнения преобразования

Закон распределения	Уравнення преобразования равномерно распределенной величины
Экспоненциальный $f(x) = \lambda e^{\lambda x}$	$X_n = -\frac{1}{\lambda} \ln V_n$
Сдвинутый экспоненциальный $f(x) = \lambda e^{-\lambda (x-b)}$	$X_n = b - \frac{1}{\lambda} \text{In } V_n$
Вейбулла $f(x) = \frac{m(x-\gamma)}{x_0}^{m-1} e^{-\frac{(x-\gamma)m}{x_0}}$	$X_n = \sqrt{-x_0 \ln (1 - V_n) + \gamma}$
Рэлея $f(x) = \frac{x}{\sigma^2} e^{-x^2/2 \sigma^2}$	$X_n = \sigma V - 2 \ln V_n$

врограмме 2 пакета ВП80. Особое значение имеет нормальный закон распределешия (Гаусса)

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(x-\mu)^2}{2\sigma^2} \right],$$

функция распределения вероятностей которого (рис. 9.2)

$$F(x) = \int_{-\infty}^{x} f(x) dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx$$

PARE $\mu = \vec{x}$; $\sigma^2 = D$.

Ввиду сложности генерации чисел в нормальным распределением R используется ряд специальных методов получения их из случайных чисел с равномерным распределением V [33, 77, 78] Так, базируясь на известной центральной теореме [77] R FXX, FXX FXX FXX

можно вычислить по т > 6 равномерно распределенных чисел V_n :

$$R_n = \left(\sum_{n=1}^m V_n - m/2\right) / (m/2)^{1/3}$$

вли при m = 6

$$R_n = (\sum_{n=1}^{6} V_n - 3)/0.7071.$$

Этот способ не удобен для реализации на микрокалькуляторах, так как требует запоминания

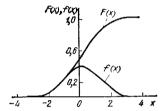


Рис. 9.2. Нормированные зависимости f(x) и F(x) для случайных чисел с нормальным распределением при $\mu = 0$, $\sigma = 1$

Нейманом предложена процедура отбора чисел с нормальным распределением из массива V_в с помощью формул [77]:

$$R_n = c \left(2V_n - 1 \right) \tag{9.6}$$

при условии

$$-2c^{2} (V_{n} - 0.5)^{2} \geqslant \ln V_{n+1}. \tag{9.7}$$

Если условие (9.7) не выполняется, вычисленное по (9.6) значение R_n бракует-Реализация метода Неймана иллюстрируется программой 3 пакета БП80. Недостаток метода - низкая скорость генерации случайных чисел, поскольку вначительная их часть бракуется. Этот недостаток относится и к другому методу отбраковки по формуле

$$R_n = - \text{ In } V_n$$

при условии

$$0.5(-\ln V_n-1)^2 > -\ln V_{n+1}$$
.

Еще один способ генерации случайных чисел в иормальным распределением, предложенный Муллером [77], позволяет получить пару сопряженных чисел с помощью формул

$$R'_{n} = \sqrt{2 \ln (1/V_{n})} \cos (2\pi V_{n-1});$$

$$R'_{n} = \sqrt{2 \ln (1/V_{n})} \sin (2\pi V_{n-1}). \tag{9.8}$$

Для упрощения программной реализации можно использовать одну из последних двух формул.

Получаемые описанными способами числа R_n соответствуют нормированному нормальному распределению ($\sigma=1,\ \mu=\bar{x}=0$). В общем случае, если $\sigma\neq 1$ и $\bar{x}\neq 0$, получаем

$$r_n = \overline{x} + R_n \ \sigma. \tag{9.9}$$

Генерацию случайных чисел с нормальным распределением обеспечивает программа 4 пакета БП80. В начале ее выполнения формируются случайные числа с равномерным распределением, а затем с помощью (9.8) и (9.9) вычисляются числа r_n . В конце программы число V_{n+1} вызывается из регистра 3, происходит безусловный переход на первый шаг программы, т. е. это число заносится в регистр 2, и операции повторяются. Приведем первые 50 случайных чисел, фэрмируемых по этой программе при x=1, $\sigma=0.1$ и $V_0=0.12345$: 1,074513; 0.8596403; 1.004002; 1.121478; 1.106327; 1,009541; 1,215648; 1,046015; 0.9514849; 1,124708; 1,04446; 0,987115; 1,060980; 1.099730: 0,9224485; 0.9265782; 1,085754; 1,059342; 1 059320; 1,014229; 0.9483776; 0.959669: 0.881554;1,007637; 1,082138; 0,8556025; 1,145623; 1,177357; 1.085406; 0.9961106; 0.9998403; 0.9814776; 0.951891; 0.9246351; 0.9508412; 1 042991: 0,9575241; 0,9595863; 0,9127397; 0,775545; 1,026912; 0,9244854; 1.036104; 0,9489098; 1,023539; 1,023054; 1 005543; 0,8880986; €.8397063; 1.062862.

Качество последовательностей случайных чисел, т. е. соответствие их статистических параметров требуемым, проверяется различными способами. Один из них — частотный — заключается в подсчете относительного числа n/N чисел, попадающих в интервал $\pm \sigma$ (от 0,2113 до 0,7887 для равномерно распределенных чисел). Для последних теорегически n/N = 0,5774 (для чисел полученых по программе БП80 n = 27, N = 50 и n/N = 0,54, что близко к 0,5774 с учетом относительно малого N). Для таких чисел x = 0,5 и $\sigma = 0,2887$ [77].

Для чисел с нормальным нормированным распределением x=0 и D=1. Лля проверки нормальности распределения вычисляются коэффициенты α_S и α_E . Как отмечалось, распределение можно принять нормальным, если S и E превышают α_S и α_E не более чем в 2 раза.

9.5. АППРОКСИМАЦИЯ РАЗЛИЧНЫХ ЗАВИСИМОСТЕЙ

Одной из областей практического приложения статистических методов рас- иста является аппроксимация различных зависимостей, задаваемых числами. Обычно с этой целью график искомой зависимости y=f(x) строят в линейном, логарифинческом или ином масштабе, что по его виду позволяет оценить закон изменения величины y(x). Такой процесс трудоемок, а главное, не обеспечивает предельно высокой точности аппроксимации.

Согласно известному методу наименьших квадратов (см. подробно в [79]) условие максимальной приближенности реальной зависимости y=f(x), заданной числами, к аппроксимирующей ее функции, заданной аналитически, совпадает с условием минимума суммы квадратов погрешностей для всех дискретных значений $y_n=f(x_n)$. Формулы, позволяющие найти параметры аппроксимирующей зависимости по ряду ее приближенных дискретных значений $y_n=f(x_n)$, полученные на основе метода наименьших квадратов, даны в [77]. Рассмотрим реализацию таких расчетов на микрокалькуляторах при любом (в отличие от [2]) числе дискретных значений x_n и y_n

А. Линейная аппроксимация. Пусть дано N пар точек x_n, y_n , приближен по представляющих линейную зависимость $y=\beta_0+\beta_1x$, гле β_0 — отрезок отсекаемый прямой y=f(x) на оси $y;\ \beta_1$ — угловой коэффициент этой прямой. Тогда β_0 и β_1 определяются как

$$\beta_{1} = \frac{\sum_{n=1}^{N} x_{n} \sum_{n=1}^{N} q_{n} - N \sum_{n=1}^{N} x_{n} y_{n}}{\left(\sum_{n=1}^{N} x_{n}\right)^{2} - N \sum_{n=1}^{N} x_{n}^{2}}$$
(9.10)

$$\beta_0 = \frac{1}{N} \left(\sum_{n=1}^{N} y_n - \beta_1 \sum_{n=1}^{N} x_n \right).$$
 (9.11)

Значення β_0 и β_1 рассчитыв, ются по согласованным программам БП81 и БП82 Первая чз них — программа накопления данных — служит для вычисления сумм величин x_n x_n^2 , y_n и x_ny_n Вторая позволяет найти β_1 и β_0 по формулам (9.10) и (9.11).

Рассмотрим практический пример Пусть преобразователь наприжения U в частоту f имеет зависимость f(U) заданную вначениями:

x = U, B	2	4	8	8	10
$y=f$, к Γ ц	5,5	6,3	7.2	8	8,6

Расчет по програм те БПЗ1 дает $\sum_{n=1}^{\Lambda} x_n = 30$; $\sum_{n=1}^{N} x_n^3 = 220$, $\sum_{n=1}^{\Lambda} y_n = 35.6$; $\sum_{n=1}^{N} x_n y_n = 229.4$; N = 5 Расчет по программе БП82 дает $\beta = 4.75$ кГц; $\beta_1 = 0.395$ кГц/В Следовательчо, аппроженмирующая прямая выражается формулов f = 4.75 + 0.395 U где f = 6 килогерцах U = 6 вольтах Программа ПП14.34 реализует линейную эппрокенмацию с помощью микрокалькулятора «Электроника Б3.34»

Б. Проаболическая аппроксимация. Пусть между Y и X существует вели нейная эрв симость вида $Y=\beta_0+\beta_1X+\beta_2X^2$ В этом случає для нахожде ния коэффициентов β_0 β_1 и β_2 необходимо решить довольно громоздкую систему линейных алгебраических уравнений

$$\beta_{0} N + \beta_{1} \sum_{n=1}^{N} X_{n} + \beta_{2} \sum_{n=1}^{N} X_{n}^{2} = \sum_{n=1}^{N} Y_{n};$$

$$\beta_{0} \sum_{n=1}^{N} X_{n} + \beta_{1} \sum_{n=1}^{N} X_{n}^{2} + \beta_{2} \sum_{n=1}^{N} X_{n}^{2} = \sum_{n=1}^{N} X_{n} Y_{n};$$

$$\beta_{0} \sum_{n=1}^{N} X_{n}^{2} + \beta_{1} \sum_{n=1}^{N} X_{n}^{3} + \beta_{2} \sum_{n=1}^{N} X_{n}^{2} = \sum_{n=1}^{N} X_{n}^{2} Y_{n}$$

$$(9.12)$$

Систему (9-12) можно привести к классическому выду системы из трех алгебрачческих уравнений (2.1) считая β β_1 и β_2 неизвестиыми x_1 , x_2 и x_3 , а суммы, входящие в (9.12) коэффициентами в соответствии с м трицей

$$\begin{vmatrix} N & \sum_{n=1}^{N} X_{n} & \sum_{n=1}^{N} X_{n}^{2} & \sum_{n=1}^{N} Y_{n} \\ \sum_{i=1}^{V} X_{n} & \sum_{n=1}^{N} X_{n}^{2} & \sum_{n=1}^{N} X_{n} & \sum_{n=1}^{N} X_{n} Y_{n} \\ \sum_{i=1}^{V} X_{n}^{2} & \sum_{n=1}^{N} X_{n}^{2} & \sum_{n=1}^{N} X_{n}^{2} & \sum_{n=1}^{N} X_{n}^{2} Y_{n} \\ \sum_{i=1}^{V} X_{n}^{2} & \sum_{n=1}^{N} X_{n}^{2} & \sum_{n=1}^{N} X_{n}^{2} & \sum_{n=1}^{N} X_{n}^{2} Y_{n} \\ & a_{0} a_{10} a_{11} a_{12} \end{vmatrix} = a_{1} a_{2} a_{3} a_{4}$$

$$(9.13)$$

Программа БП83 для микрокалькулятора «Электроника БЗ-21» обеспечивает накопление данных для расчета коэффициентов матрицы (9.13), а программа БП84 позволяет найти главный определитель Δ системы (9.12). Заменяя в нем столбцы столбцом свободных членов a_4 , a_8 и a_{12} , находим Δ_1 , Δ_2 и Δ_3 и соответственно $x_i=\beta_0=\Delta_1/\Delta;~x_2=\beta_1=\Delta_2/\Delta$ и $x_3=\beta_2=\Delta_3/\Delta.$ Рассмотрим пример параболической аппроксимации зависимости, заданной

следующими значениями X_n и Y_n :

X	2	4	6	8	10	12	14
Υ	3,76	4,44	5,04	5,56	6,0	6,36	6,64

Используя программу БП83, получеем матрицу чисел, соответствующую (9.13):

Взяв первых три столбца, с помощью программы БП84 находим $\Delta=1\,053\,$ С9.6 Заменив первый столбец четвертым и повторив все операции по программе ВП84, нолучим $\Delta_1=3$ 161 052. Следовательно, $\beta_0=\Delta_1/\Delta=2,999965 \approx 3$. Заменив второй столбец четвертым, получим $\Delta_2=421478,4$, следовательно, $\beta_1=\Delta_2/\Delta=0.4$, и, наконец, заменив третий столбец четвертым, получим $\Delta_3=-10537$. т. е. $\beta_2=\Delta_3/\Delta=-1,000003\cdot10^{-2}\approx-0.01$. Таким образом, заданная зависимость аппроксимируется выражением $Y=3+0.4X-0.01X^2$. На микрокалькуляторе «Электроника БЗ-34» эти вычисления реализуются одной программей ПП15/34.

В. Степенная аппроксимация. Будем некать зависимость у от х в виде степенной функции

$$y = \beta_0 x^{\beta_1}$$

коэффициенты которой

$$\beta_{1} = \frac{\sum_{n=1}^{N} \ln x_{n} \sum_{n=1}^{N} \ln y_{n} - N \sum_{n=1}^{N} \ln x_{n} \ln y_{n}}{\left(\sum_{n=1}^{N} \ln x_{n}\right)^{2} - N \sum_{n=1}^{N} (\ln x_{n})^{2}}; \tag{9.14}$$

$$\ln \beta_0 = \frac{1}{N} \left(\sum_{n=1}^{N} \ln y_n - \beta_1 \sum_{n=1}^{N} \ln x_n \right); \tag{9.15}$$

$$\beta_0 = \exp\left(\ln \beta_0\right). \tag{9.16}$$

Накопление данных организуем по программе БП85, а расчет по формулам (9.14)—(9.16) — по программе БП86. Рассмотрим аппроксимацию зависимости, заданной числами:

х	1 2		3	4	5	6
y	3	12	27	48	75	108

Расчет по программе БП85 дает значения:

$$\sum_{n=1}^{N} \ln x_n = 6.58; \ \sum_{n=1}^{N} x_1^2 = 9.41; \ \sum_{n=1}^{N} \ln y_n = 19.75; \ \sum_{n=1}^{N} \ln x_n \ln y_n = 26.05.$$

Расчет по программе БП86 при N=6 даег значения $\beta_1=.;\ \beta_n=3.$ Следоватольно, зависимость (9.16) имеет вид $y=3x^2.$ Тот же результат получим, используч одну программу ПП16/34, реализующую степенную анпрокси нацию с помощью микрокалькулятора «Электроника Б3-34»

Г. Экспоченциальная аппроксимация. В простейшем виде гакая аппроксямация описывается зависимостью

$$y = \beta_2 e^{\beta_1 x}. \tag{9.17}$$

Значения β_0 и β_1 определяются по формулам:

$$\beta_{1} = \frac{\sum_{n=1}^{n} x_{n} \sum_{n=1}^{N} \ln y_{n} - N \sum_{n=1}^{N} x_{n} \ln y_{n}}{\left(\sum_{n=1}^{N} x_{n}\right)^{2} - N \sum_{n=1}^{N} x_{n}^{2}};$$
(9 18)

$$\ln \beta_0 = \frac{1}{N} \left[\sum_{n=1}^{N} \ln y_n - \beta_1 \sum_{n=1}^{N} x_n \right]; \tag{9.19}$$

$$\beta_0 = \exp(\ln \beta_0). \tag{9.20}$$

Для накопления данных служит программа БП87, а для расчета β_0 и β_1 по (9.18)—(9.20)— программа БП88 Приведем численный пример Пусть зависимость y(x) задана числами:

х	2	3	4	5	6	7	8	9	10
y	3,5	5,0	6,2	9,0	13,0	16,0	23,0	30,0	40,0

Применяя программу БП87, получаем

$$\sum_{n=1}^{N} x_n = 54; \quad \sum_{n=1}^{N} x_n^2 = 384; \quad \sum_{n=1}^{N} \ln y_n = 22,45; \quad \sum_{n=1}^{N} x_n \ln y_n = 153.$$

Далее по программе БП88 находим $\beta_1=0.305$ и $\beta_0=1.94$ Следовательно, зависимость (9-17) имеет вид $y=1.94\mathrm{e}^{0.305x}$. Этот результат можно получить используя единую программу ПП17/34. В [2] описан ряд программ для вычисления специальных функций на микро

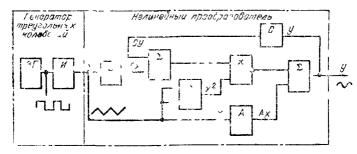
В [2] описан ряд программ для вычисления специальных функции на микро калькуляторе «Электроника БЗ-21» по их аппроксимациям или разложениям в ряд Наиболее распространенные функции можно вычислить о помощью программ ПП18/34—ПП27/34.

9.6. МАКРОМОДЕЛИРОВАНИЕ НЕЛИНЕЙНЫХ И ИМПУЛЬСНЫХ УСТРОЙСТВ

Микро-ЭВМ могут использоваться для макромоделирования, т. е для укрупненной имитации работы и для расчета параметров нелинейных и импульсных устройств. Макромоделирование особенно целесообразно для устройств построенных на интегральных микросхем х, внутренняя структура и параметры

компонентов которых разработчику аппаратуры цостоверно чемае тыр рассмо трим два примера макромоделирования нединейных импульсных устройств

Структурная схема функционального генература (рис. 9.3) го крж в задающий генератор примоуговных импульсов 3Γ в гегратур H и невинейный презбразователь (НП) преобразующий треугольные импульсы пртегратора в сину



Нис 93 Структурная слема функционального генератора

соидальный сигил В состав НП входят сумматоры (Σ), умножители (\times), масштабирующий усилитель 4 и делители напряжения B и C, осуществляющие нелии йное преобразование вида

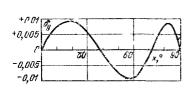
$$y(x) = Ax - x^{2}(B + Cy) = Ax - Bx^{3}(1 + Cx^{2})$$
 (9 21)

т де $y\left(x\right)$ — нормированное виходное напряжение, $x=\pm\pi/2$ — пормированное папряжение на входе НП

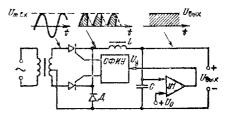
Пусть θ_1 и θ_2 — приведенные погрешности числителя и знименателя (9 21), обусловленные ЭДС смещения операционных усилителей, вхедящих в сумматор у умножители НП Тогда функционирование генератора можно описать урав вением

$$y(x) = (Ax - Bx^3 + \theta_1)/(1 + Cx^2 + \theta_2)$$

Задача макромоделирования заключается в подборе коэффициентов A B п C по минимуму погрешности δ_y (x) = $\sin x - y$ (λ) выходного синусондаль.



Гис 94 Зависимость относительной погрешности аппроксимации от па раметра х при оптимальном выборе коэффициентов A, B и C



Puc=9.5 Функциональная схема тиристорного стабилизирующего выпрямителя

ного сигнала. Для этого может использоваться программа БП89, позволяющая вычислять δ_y (x) по заданным A, B, C, θ_1 и θ_2 с помощью микрокалькулятора «Электроника БЗ-21». Значения x вводятся в градусах

Вычислительные возможности микрокалькуляторов не позволяют решать данную задачу как задачу автоматической оптимизации коэффициентов A B и C при $\theta_1=\theta_2=0$ по минимуму δ_y (x) в диапазоне $x=\pm\pi/2$ Поэтому такая оптимизация может проводиться лишь методом целенаправленных проб [80]. В результате получим. $A=1,00042,\ B=0,111382$ и C=0,056646 Из вави-

с ссти δ_y (c) р ссчатавнен по программе БПБЭ срис 9.4) ви $_{\star}$ э что маке сувет объем погремность несколько меньше 0,01%

Согласно расчету при A=1 (т. е. когда из схемы исключен мысштат) тум мый усилитель) максимальная погрешност $\delta_y(x)$ возраст ст до — 0,0 % от наблюдается при = 90° Аналогично можно оценить по региность $\delta_y(x)$ при изменениях других параметров и сделать выводы о необходимой точности вхоля щих $H\Pi$ узлов

В качестве другого примера рассмогрим функциональное макромоделирование замквутой ампульсной системы тиристорного стабилизирующего ыпря интеля (рис 95) сод ржащего двухполупериодный управляемый выпрямитель на тиристорах, диод \mathcal{Z} LC-фильтр, схему фазоимпульсного управления $C\Phi U Y$ усилитель рассогласования YI, сравнивающий сглаженное выходное напряжение $U_{\text{вых}}$ с опорным U_0 и меняющим с помощью $C\Phi U Y$ фазовый угол регулироватия α

Работа такого выпрямителя описывается равнениями

$$U_{\rm BMX} = U_{m \ \rm BX} \ (1 + \cos \alpha)/\pi$$
, $U_{\rm y} = K \ (U_{\rm 0} - U_{\rm BMX})$, $\alpha = 0.5\pi \ (1 + K_{\rm y} \ U_{\rm y})$, где K — коэффициент усиления YI ; $K_{\rm y}$ — коэффициент преобразования управляющего напряжения $U_{\rm y} \ C\Phi H Y$ в угол регулирования α ; $U_{m \ \rm BX}$ — амплитуда

входного напряжения
Эти уравнения легко свести к следующим

$$f(\alpha) = U_{y}/K = U_{0} - U_{Bblx} = U_{0} - U_{m blx} (1 + \cos \alpha)/\pi);$$

$$\phi(\alpha) \Rightarrow U_{y}/K = (2\alpha/\pi - 1)/(KK_{y})$$
(9 22)

Нелинейную систему (9 22) можно решить численным методом поразрядного приближения определив равенство $f(\alpha)=\phi(\alpha)$ соответствующее квазистационарному режиму работы выпрямителя. По программе БП90 реализуется полобное цифровое моделирование и находится $U_{\rm Bbx}=f(U_{\rm mbx},U_0,K,K_y)$ и α При $U_0=10$ В; $KK_y=20$ рад/В; $\Delta\alpha=1$ рад вычисления дают следующую зависимость $U_{\rm Bbx}$ от $U_{\rm mbx}$

<i>U_{mB}</i> , B	20	25	30	35	40
$U_{\mathtt{вых}}$ В	10,01945	10,00827	10,00138	9,996718	9,993012

Используя эти данные петрудно найти коэффициент стабилизации $K_{\text{Cl}} = \Delta U_{m \text{ BX}} \, U_{\text{BMX}} \, \Delta U_{m \text{ BMX}} \, U_{\text{BX}} \approx 335 \, \text{для} \, U_{m \text{ BX}} = 30$. 35 В.

БИБЛИОТЕКА ПРОГРАММ ПРОГРАММИРУЕМОГО МИКРОКАЛЬКУЛЯТОРА «ЭЛЕКТРОНИКА БЗ-21»

Общая ин-трукция к пользованию программами:

1 Для ввода программы ажимаются клавиши Р и РП.

2. Программы вводятся последовательным нажатием клавиш, указанных в тексте программ, записанных построчно. Для упрощения типографской записи программ операция поворота стека по часовой стрелке обозначена символами P,, а против часовой стрелки P/—/. Ввод контролируется по кодам операций, определяемым с помощью таблицы кодов.

3. После ввода программы переход в рабочий режим производится нажати-

ем клавиш Р РР и В/О.

4. В регистрі памяти вводятся исходные данные согласно правилам ввода,

указанным в инструкции к программе.

5. Программа или ее части запускаются нажатием клавиши С/П. При полуавтоматическом вводе исходных данных, когда помер регистра памяти содержится в тексте программы, после ввода каждого числа нажимается клавиша С/П

6. Перед использованием программ следует опробовать их на контрольных

примерах, приведенных в тексте или в кратком описании программы.

7. Сложные программы снабжены дополнительными краткими инструкциями Рекомендуется гщательно разобраться в последовательности ввода данных и вывода результатов. Для согласованных программ каждая последующая программа вводится без выключения микрокалькулятора после выполнения предшествующей программы.

8 Если программа «зациклилась», счет останавливается нажатием клавиши С/П В этом случае и при выдаче знаков переполнения следует тщательно прове-

рить программу по шагам и убедиться в правильности решаемой задачи.

Программа БП1. Расчет ВАХ днода по (4.1), (4.2) и (3.2). Ввод: T=P2, $T_n=P3$, I_0 (20° C) P4=m=P5 Результат: I_0 (T), Φ_T (T) и (после набоўа T) U.

Контрольный пример: $T=+60^{\circ}$ C. $T_y=8^{\circ}$ C. I_0 (20° C) = 10^{-11} A. m=2 Получаем $I_0=3,19999\cdot10^{-10}$ A. $\phi_T=2,841296\cdot10^{-2}$ В и вводя $I=10^{-3}$ A. $U=8.498286\cdot10^{-1}$ В

Программа БП2. Расчет ВАХ туннельного днода по формуле (3.3). Ввод: A = P2, $\alpha = P3$ D = P4, $\beta = P5$, U = P0. Результат: I (при изменения U = P0 нажать клавншу C/Π и получнть повое значение I).

Контрольный пример: $A=2,718281\cdot 10^{-1}$ A/B, $\alpha=10$ B⁻¹, $D=10^{-2}$ A, $\beta=20$ B⁻¹ Получаем при U=0,1 В $I=10^{-2}$ А, при U=0,4 В $I=1,994462 \times 10^{-3}$ А, при U=0,8 В $I=8,959058\cdot 10^{-3}$ А.

Программа БПЗ. Расчет семейства ВАХ маломощного полевого транвистора по формулам (3.13), (3.14). Ввод: b = P2, $U_0 = P3$, $U_0 = P4$, $1 + \eta = P5$, $U_C = P0$. Результат: I_C (при смене U_C нажать клавишу С/П и получить новое значение I_C).

Контрольный пример: $b=10^{-4}~{\rm A/B^2},~U_3=0,~U_0=-5{\rm B},~(1+\eta)=1.$ При $U_{\rm C}=1~{\rm B}~I_{\rm G}=4,5\cdot10^{-4}~{\rm A},~$ при $U_{\rm G}=3~{\rm B}~I_{\rm G}=1,05\cdot10^{-3}~{\rm A},~$ при $U_{\rm G}\geqslant 5~{\rm B}~I_{\rm G}=1.25\cdot10^{-3}~{\rm A}.$

Программа БП4. Расчет ВАХ мощного МДП-транзистора по формуле (3.17). Ввод: $S=P2,\ U_0=P3,\ U_3=P4,\ \rho=P5,\ b=P6,\ U_0=P0.$ Результат: $I_{\bf G}$ (при смене $U_{\bf G}$ нажать клавищу С/П и получить новое значение $I_{\bf C}$).

Контрольный пример: $S=0.15~{\rm A/B},~U_0=1~{\rm B},~U_3=10~{\rm B},~P=1,~b=0.01$ (транэнстор КП901) При $U_{\rm C}=5~{\rm B}~I_{\rm G}=0.6133669~{\rm A},$ при $U_{\rm C}=10~{\rm B}~I_{\rm C}=1.017723~{\rm A}$ при $U_{\rm G}=40~{\rm B}~I_{\rm G}=1.735786~{\rm A}.$

Программа БП5. Расчет коэффициента p для аппро. симации ВАХ мощного МДП-транзистора по формуле (3.18). Ввод: S=P2, $U_{C0}=P3$ $U_{b}=P4$, b=P5, $I_{C0}=P6$.

Контрольный пример: $S=0.15~{\rm A/B},~U_{\rm C0}=20~{\rm B},~U_0=1~{\rm B},~b=0.01/{\rm B}^2,~I_{\rm C0}=2~{\rm A}.~$ Получаем p=0.996831.

Программа Б Пб. Расчет ВАХ лавинного транзистора по формуле (4.3). Ввод: $\alpha_N=P2$, $n^*=P3$, $U_M=P4$, $|I_B|=P5$, $I_{K0}=P6$, 0=P8, $I_{K}=P0$ Результат: M и U_{K9} .

Контрольный пример: $\alpha_N=0.98$, $n^*=2$, $U_M=120$ В, $|I_{\rm B}|=10^{-3}$ А, $I_{\rm K0}=10^{-6}$ А. При $I_{\rm K}=0.5\cdot 10^{-3}$ А получаем M=500. $U_{\rm K3}=119.8798$ В, при $I_{\rm K}=2\cdot 10^{-3}$ А M=2.038735, $U_{\rm K3}=85.65511$ В, при $I_{\rm K}=20\cdot 10^{-3}$ А M=1.074056, $U_{\rm K3}=31.50999$ В.

Программа БП7. Расчет $I_{\rm CM}$ мощных МДП-транзисторов и эпергетических параметров двухтактного каскада на них. Ввод: $S=P2,\ U_0=P3$ $U_{3,4}=P4,\ p=P5,\ b=P6,\ U_{\rm C0}=P7.$ Результат: $I_{\rm CM}$ (после набора $E_{\rm C}$) P_{\sim} и $R_{\rm H}$.

Контпольный пример: см в § 4.1.

Программа БП8. Подготовка данных к расчету каскада по схеме на рис 45, а Ввод: $R_1=$ P2, $R_2=$ P3, $R_3=$ P4, $E_{\rm K}=$ P0. Результат: $E_{\rm K}/R_1=$ C6, $I_{\Theta 0}$ (T) = P5. k= P6, $m\phi_T$ (T)/ $R_6=$ P7 и $1/R_6=$ P8.

Инструкция: При первом нажатии клавиши С/П получаем значение — (1 + + R_{9}/R_{6}). Набиргем $lpha_{N}$ (T) и нажав клавишу С/П получим k. Вводим I_{20} $(20^{\circ}\,{\rm C})={\rm P2}$ и $T_{\rm y}={\rm P3}$ набираем $T={\rm P0}$ Нажав клавишу С/П, завершаем расчет $(m\phi_T/R_0$ запосится в P7, I_{30} (T) в P5). При изменении T повторяем расчег.

Программа БП9. Расчет / каскада со схемой на рис. 4.5, б Выд. $E_{K}/R_{1} = P$ I_{5} (0) = P3 $M_{01} = P4$, $I_{00} = P5$, k = P6, $mq_{T}/R_{0} = P7$,

 $n = I_{K0}/I_{\ge 0} = P3$

Контрольный пример: для $T=20^{\circ}$ С и 60° С, $R_1=20$ кОм, $R_2=10$ кОм, $R_3=R_{\rm K}=1$ дом, $L_{\rm K}=10$ В, $T_{\rm Y}=8^{\circ}$ С, $J_{\rm B}$ (0) = 0, $M_{\rm BI}=1$ мА, n = 5 получаем приведенные в таблице данные.

T °C	a _N	k	<i>1</i> Э0, мА	E _B /R _B , мА	IЭ. мА	$ \begin{vmatrix} U_{K} = (E_{K} - L_{K}) \\ -I_{K}R_{R} \end{vmatrix}, B $
20	0,95	_0,2	0,001	0,5	2,235	7 ,765
60	0,96	-0,19	0,032	0,5	3,266	6,734

Приграмма БП10. Расчет остаточного напряжения ключа на мало ощном полевым гранзиеторе $U_{\rm C} < (U_3 - U_0)$ Ввод: $U_{\rm C}$ (0) = P2, $R_{\rm C}$ = P5, b = = P6 $E_C = P7$ (1 + η) 2 = P8, $(U_3 - U_0) = PX$

Контрольный пример. при $U_{\rm C}$ (0) = 0, $R_{\rm C} = 2 \cdot 10^4$ Ом $b = 10^{-1}$ A/B², $E_{\rm C}$ 12 В $\eta=0.8$ и $U_{\rm 3}-U_{\rm 0}=12$. 10 и 8 В получаем $U_{\rm OCI}=\overline{U}_{\rm C}=$ = 0,497; 0,502 и 0,768 В, пажимая клавищу С/П после ввода $U_3 - U_0 = PX$. Программа БП11. Расчет передаточной харакгеристики $U_C = f(U_3)$

ключа и: мощиом МДП-транзисторе. Ввод: $0=P2,\; \rho=P4,\; b=P5,\; SR_c=P6,\; E_C=P7$ и $U_3-U_0=PX$

Контрольный пример: при p=1. b=0.01 I/B, $SR_{\rm e}=2.0$ $F_{\rm C}=35$ B $U_3 - U_0 = 15$, 10, 5, 2 и 0,5 В имеем $U_C = 13,86$ 16,21 23,21 30! и 33,75 B.

Прог, амиа Б $\Pi 12$. Расчет коэффициента нестабильности S каскада их бипо тярном транзисторе. Ввод: $R_a = P2$. $R_1 = P3$, $R_2 = P4$. $R_{K'} = P5$ $R_{K2} =$ = Po, β_N = P7.

Кочтрольный пример: см. в § 4.3.

Программа БП13. Расчет $M_{
m K}$ каскада на биполярном гранзчеторе. Ввод: $R_0 = P2$, $R_1 = P3$, $(R_2 + R_{K1}) = P4$ $\Delta T = P5$, $\Delta I_{K0} = P6$, $\Delta \beta \beta = P7$, $S = P8, (I_B - I_{K0}) = 0.$

Инструкция Сопротивления вводятся в килоомах, токи — в микроамперах, значение $\varepsilon = 2,5$ мд/° С вписано в программу

Контрольный пример: см. в § 4.3.

Программа БП14. Расчет коэффициентов температурной нестабильности и $\Delta I_C/\Delta T$ каскада на полевом транзисторе Ввод: $\Delta I_{CM}/\Delta T = P2$. $I_{CM} = P3$, $|U_0|\stackrel{\smile}{=}$ Р4 $R_0=$ Р5 $I_C=$ Р0 Результат: k_M k_0 и $\Delta I_C/\Delta T$

Контрользый пример: см. в § 4.4.

Программа БП15. Гармонический анализ табтично или графически заданной функции Ввод: $y_1=$ P5, N= P8, n= P3 Результат: A.N/2= P0, A_{ns} N/2= P2 $A_{nc}N/2=$ P3 tg $\phi_n=$ P0

Инструкция. После ввода y_1 и N и набора на цифhoовых клавишах n нажимаем клавины С/П После отработки отсчега набираем второй отсчет и, и нажимаем клівишу С/П и т. д. (в колце отработки каждый отсчет вново высвечивается на индикаторе) После огработки ненулевых отсчетов нажизаем клавиши ВП6 и С/П получаем $A_nN'2$ нажав еще раз клавищу С/П получим tg ϕ_n (значения $A_{ns}N'2$ и $A_{nc}N/2$ можно вызвать из регистров P2 и P3)

Конторльный пример: см. в § 5.2.

Программа БП16. Расчет застотной и фазочастотной марактеристик 4-полюсние ов по заданцен сиблично или графически переходной характеристике Ввод: $f\Delta t = P6$ $a_i = P0$ Результат: $A(f) \circ (f)$

Инструкция После взода $f\Delta t$ набираем на цифровых клави дах первый отсчет a_1 и нажимаем клавишу С/П и т. д. до ввода a_N (в конце отработки к ждый отсчет внова выснечивается на индикаторе). Затем нажав клавиши БП7 и СП, получим A(t) ϕ ϕ ϕ не раз клавишу C/Π получим $\mathsf{tg} \, \phi(t)$.

Контрольний прич т сч в \$53.

Программа БП17. Расчет коэффициентов Берга α_n . Ввод: n=P2, $\theta_{({\rm rpan})}={\rm P0}$.

Контрольный пример: α_0 (30° C) = 0,1105983, α_1 (90° C) = 0,4999999, α_1 (180° C) = 0,5, α_2 (60° C) = 0,2756644, α_3 (40° C) = 0,1845363.

Программа БП18. Расчет спектра и коэффициента гармоник методом пяти ординат. Ввод: $i_3=$ P6, $i_4=$ P7, $i_2=$ P8, $i_1=$ P1, $i_5=$ P0. Результат: k_Γ ($I_{\rm cp}$, I_{m_1} ... I_{m_4} заносятся соответственно в регистры Р2 ... Р6).

Контрольный пример: см. в § 5.4. Программа БП19. Расчет выпрямителя.

1. Расчет θ , 1/B (θ) и F (θ) по ваданному A. Ввод: θ (0) = P2, $\Delta\theta_1$ = P3, ϵ = P4, и A = P8.

2. Расчет D (θ) и $k_{\text{пв}}$. Ввод: $\theta=\text{P2},\ m=\text{P3},\ \sin\theta=\text{P5},\ \cos\theta=\text{P6},\ k$ (θ) = P7. При использовании перед расчетом программы 1 эти данные можно не вводить.

F2 2
$$\times$$
 P8 Pcos 2 \div \uparrow 1 $+$ \uparrow F2 \times P4 F8 Psin 0 , 7 5 \times /—/ \uparrow F4 $+$ \uparrow P π \times \uparrow F1/x \uparrow F8 $+$ 2 \div \uparrow F4 \div \uparrow F5 \div \uparrow F6 \div C/П

Контрольный пример: см. в § 5.5.

Программа БП20. Расчет w для заданной индуктивности L катушки (рис. 6.1, 6). Ввод: w (0) = P2, Δw = P3, D = P4, l = P5, 3,5 l/d = P6, L_0 = \sim P7.

Контрольный пример: см в § 6.1.

Программа БП21. Расчет числа витков катушек (рис. 6.2, 6.3).

1. Катушка торондальная однослойная круглого сечения (рис. 6.2, a) Ввод. $D=P2,\ D_1=3,\ L=PX$

P4 F2 F
$$x^2$$
 \uparrow F3 F x^2 \rightarrow F $\gamma^ /-/$ \uparrow F2 + 2 \times \uparrow P π \times F1/ x \uparrow F4 \times F γ^- C/ Π B Π

Для D=5 см, $D_1=2$ см, $L=10^{6}$ н Γ н имеем w=195,2635.

2. Катушка торондальная однослойная прямоугольного сечения (рис. 6.2, б). Ввод: $D_1 = P2$, $D_2 = P3$, h = P4, L = PX.

P5 F3
$$\uparrow$$
 F2 \div PIn 2 \times \uparrow F4 \times F1/ x \uparrow F5 \times F y^- C/ Π B Π P0

Для $D_1=3$ см, $D_2=4$ см, h=1 см, $L=10^4$ нГн имеем w=131,8344 3. Катушка торондальная многослойная круглого сечения. Ввод: D=P2, $D_i = P3$, L = PX

Для D=4 см, $D_1=0.8$ см, $L=10^7$ нГн имеем w=458,0067.

4. Катушка короткая цилиндрическая многослойная (см. рис. 6.3). Ввод: D = P2, l = P3, c = P4, L = PX.

P5 F2 3
$$\times$$
 P6 F3 9 \times P7 F4 1 0 \times \uparrow F6 $+$ \uparrow F7 $+$ \uparrow P5 \times \uparrow F2 \uparrow \uparrow P π \div 2 $\bar{\epsilon}$ \div F γ \uparrow C/ Π $\bar{\epsilon}\bar{\Pi}$ P0

Для D=2.5 см, l=c=1 см, $L=200\,000$ нГн имеем w=103,9089.

Программа БП22. Расчет w при заданной индуктивности L для тороидальной катушки на ферромагнитном сердечнике с круглым сечением. Ввод: $d_{\rm H}={\rm P2},\ d_{\rm B}={\rm P3},\ h={\rm P4},\ \mu={\rm P5},\ u\ L={\rm PX}.$ Результат: w при $d_{\rm H}/d_{\rm B}<1$, $5\dots 2$ и w при $d_{\rm H}/d_{\rm B}>$,5 ... 2.

P6 F2
$$\uparrow$$
 F3 \uparrow F4 \times \uparrow F5 \times 4 \times P8 F2 \uparrow F3 $+$ \uparrow F6 \times \uparrow F8 \div F $_V$ $-$ C/ Π F2 \uparrow F3 \div PIn \uparrow F4 \times \uparrow F5 \times 2 \times \uparrow F6 \div F1/ x F $_V$ $-$ C/ Π B Π P0

Контрольный пример: при $d_{\rm H}=4$ см, $d_{\rm B}\!=\!2$ см, h=1 см. $L\!=\!2\!\cdot\!10^\circ$ нГн и $\mu=1000$ имеем w=122,4744 и 120.1122.

Программа БП23. Расчет w катушки на броневом сердечнике (см. рис. 6.4). 1. Расчет коэффициентов A и B Ввод: $d_1 = P2$, $d_2 = P3$, $d_3 = P4$ $d_4 =$ = P5, $h_1 = P6$ ii $h_2 = P7$.

F4 Fx² P, P5 Fx²
$$\uparrow$$
 P/-/ — F1/x P8 F2 Fx² P, F3 Fx² \uparrow P/-/ — F1/x \uparrow F8 + P8 F6 \uparrow F7 + \uparrow F8 \times P, F2 F3 + P8 F6 + P1/x \uparrow F5 + \uparrow F8 \div PIn P8 F7 \uparrow F6 — F1/x \uparrow F8 \times P8 P/-/ P7 C/ Π

При $d_1=1$ см, $d_2=2$ см, $d_3=4$ см, $d_4=5$ см, $h_1=3$ см $h_2=4$ см имеем A=3,111111=P7=PX, B=1,098611=P8. 2 Pacyer w. Ввод: $\mu=P2$, L=PX (A=P7 и B=P8 заносятся пред-

шествующей программой).

P3 F2 1 9 , 7 4
$$\times$$
 P4 F7 † F3 $+$ † F3 \times † F4 \div F γ $=$ C/ Π \to \to P0

При $\mu = 10$, $L = 5 \cdot 10^8$ вГн имеем w = 103,2614.

Программа БП24. Расчет k_2 и L катушек с сердечником (см. рис.6.5) Ввод:

$$a = P2, d_1 = P3, l_m = P4, F_0 = P5, \mu = P6, L = PX$$

 $P7 \quad F6 \qquad F3 \quad \times \quad \uparrow \quad F2 \quad \div \quad \uparrow \quad F4 \quad \div \quad \uparrow \quad F4 \quad \times \quad \uparrow \quad F5 \quad \div \quad \uparrow \quad F6 \quad \div \quad \uparrow \quad P\pi \quad \div \quad 4 \quad \div \quad FV = C/\Pi$

Контрольный пример: при a=1,5 см. $d_1=0.05$ см. $l_m=10$ см. $F_0=1$ см³, $\mu=1000,\ L=50\cdot 10^8$ вГн вмеем $k_9=0.2307692$ и $\omega=415.2322$.

Программа bit20. Расчет w тонкопленочных катушск (см. рис. 6 о). Втот: $A_{\rm H}={\rm P2},~A_{\rm B}={\rm P3}~~k_1={\rm P4},~k_2={\rm P5}~~L={\rm PX}.$

P6 F2
$$\stackrel{\wedge}{}$$
 F3 $\stackrel{\wedge}{}$ P8 F3 $\stackrel{\wedge}{}$ r²1/x $\stackrel{\wedge}{}$ F5 $\stackrel{\times}{}$ $\stackrel{\wedge}{}$ F8 $\stackrel{\times}{}$ Pln $\stackrel{\wedge}{}$ F8 $\stackrel{\times}{}$ $\stackrel{\wedge}{}$ F4 $\stackrel{\times}{}$ $\stackrel{\wedge}{}$ F6 $\stackrel{\wedge}{}$ F1/x P8 3 $\stackrel{\wedge}{}$ 5 $\stackrel{\div}{}$ $\stackrel{\wedge}{}$ F8 $\stackrel{x^9}{}$ C/ $\stackrel{\wedge}{}$ F $\stackrel{\wedge}{}$

Контрольный пример: при $A_{\rm H}=1$ см. $A_{\rm B}=0.5$ см. $k_1=2.33$. $k_2=4$, L=200 нГн имеем w=6.566939

Программа БП26. Расчет w толкопленочной катушки (см. рис. 6.6) с задалным шагом витков. Ввод: w (0) = P2, Δw_1 = P3. $A_{\rm B}$ = P4, l = P5. L_0 = 75. k = P7.

 Π римечание. Значелие k_2 (подчеркиутая цифра 4) вписано в программу).

Контрольный пример: дан в § 6.1.

Программа БП27. Расчет дросселя фильтра.

1. Расчет $Q_{\rm CT}$, a, c, M и $\widehat{l}_z/2$.

2. Расчет d и шир.

3. Расчет $k_{\rm M}$ и $r_{\rm дp}$.

Порядок ввода и причер расчета даны в § 6.2.

Программа БП28. Расчет свлового трансформа тора Ввод: $fB_m=P2$, s=P3, δ P4 $k_c=P5$, $\eta_{1D}k_M=P6$, P_{1B5} P7, 0.0222=P8

Порядок расчета дан в § 6.3.

Программа БП29. Расчет емкостей.

1 Расчет C_0 , S, A и B пленочного конденсатора. Ввод: $\mathbf{\epsilon} = P\mathbf{2}$, $\mathbf{m} = P\mathbf{3}$, $C = P\mathbf{5}$ $Q = P\mathbf{6}$, d = PX.

P4 F3 1
$$\uparrow$$
 F2 \times 0 , ϑ 8 8 5 \times \uparrow F4 \div C/ Π F1/ x \uparrow F5 \times P7 C/ Π F6 \uparrow F7 \times F γ C/ Π F7 \uparrow F6 \div F γ C/ Π

Then c = 4.7, m = 3, C = 150 and Q = 2, d = 0.01 and $a_{CM} = 92.14$ and $a_{CM} = 1.803101$ cm², A = 1.899 cm, B = 0.9495001 cm

2 Расчет емкости проводников. Ввод: $k_1 = P2$, $k_2 = P3$, $\epsilon = P4$, t = P5, d = P6, x = PX.

При $k_1=0.24,\,k_2=4$ $l=10^3$ см, d=0.2 см. $\epsilon=1,\,x=h=100$ см получаем C=72.70457 пФ

Программа БП30. Расчет линий передачи 1 Расчет W и v/c линии (см. рис. 6 в. a) Ввод: $\varepsilon = P2$, $Z_R = P3$, t = P5, h = P0.

При e=4.7, $Z_{\pi}=75$ Ом t=0.05 мм h=1 мм получаем W=0.8250117 мм v/c=0.5869672

2 Расчет W и v/c линии (см рис 6 8, 6) Ввод: e = P2 $Z_{\pi} = P3 = P5$, b = PX

При $\epsilon=4,7,\,Z_{\pi}=50~{\rm Om}~t=0,5$ мм и b=2,5 мм получаем W=0.3493252 мм, v/c=0.4612656

3. Расчет параметров искусственных линий задержки Ввод $t_{\Phi}=P2$, $Z_{\mathbf{A}}=P3$, $R_{\mathbf{H}}=R_{\mathbf{B}}=P4$, $k_{\mathbf{1}}=P5$ $k_{\mathbf{2}}=P6$ $t_{\mathbf{2}}=PX$

При $t_0=0.05\cdot 10^{-6}$ с. $Z_{\pi}=600$ Ом, $R_{\pi}=R_{\rm H}=1000$ Ом k=11 $k_2=1$ 07 и $t_0=10^{-6}$ с получаем n=98.38697 Округляем $n=100={\rm PX}$ и получаем $C=1.557632\times 10^{-10}$ Ф L=5.607476 мкГн и $K_0=0.25$

Программа БП31. Вычисление параметра x линий передачи по заданному $Z_{\pi 0}$, фрагмен ы вписываются в программу реализации метода подекадного приближения

 $1 \quad x = d$ Ввод; $x \quad (0) = P2$. $\Delta x_1 = P3$ 60 $\sqrt{\varepsilon} = P4$ D = P5, l = P6, l = P6,

При x (0) = 0, Δx_1 = 0,1 ем. 60 = P4 D = 1 см. l = 0.25 см. Z_{II0} = 100 Ом имеем d = x = 0,1403 см.

2.
$$x = a/d$$
 BBOA: $x(0) = P2$. $\Delta x_1 = P3$. $120/\sqrt{e} = P4$ $Z_{\pi_1} = P5$.

$$F_{X^2}$$
 1 — F_{Y^-} \uparrow F_2 + P_3 \uparrow P_4 \times P_6 \uparrow F_6 —

При x (0) = 0 $\Delta x_1=1$ ем, 120= P4 $Z_{JI0}=300$ Ом имеем x=6.132 3 x=D/d Ввод x (0) = P2, $\Delta x_1=$ P3, $60/\sqrt{\epsilon}=$ P4 $Z_{JI}=$ P5 Программа совпадает с приведенной в п. 2.

4. x = a. Ввод: x(0) = P2, $\Delta x_1 = P3$, $120/\sqrt{\varepsilon} = P4$, D = P5, d = P6, $\mathcal{L}_{\pi 0} = P7$.

При x (0) = 0, $\Delta x_1 = 0.1$ см, 120 = P4, D = 1.5 см, d = 0.1 см. $Z_{\pi^{\alpha}} = 200$ Ом имеем a = 0.275 см.

5. x = a. Ввод: x(0) = P2, $\Delta x_1 = P3$, $60/\sqrt{\epsilon} = P4$, $d_1 = P5$, $d_2 = P6$, $Z_{\pi 0} = P7$.

При x (0) = 0, $\Delta x_1 = 0.1$ см, 60 = P4, $d_1 = 0.1$ см, $d_2 = 0.05$ см $Z_{\pi^0} = 300$ Ом имеем $\alpha = 0.434$.

6. Расчет x=n по заданному $F_{W'0}$. Ввод: x (0) = P2, Δx_1 = P3, $D=F^4$, d=P5, $F_{W'0}=P6$.

При x (0) = 0, $\Delta x_1 = 0.1$ см, D = 1 см, d = 0.5 см, $F_{W0} = 4$ имеем n = 3.35 вигка на 1 см.

Программа БП32. Расчет липий передачи при комплексной нагрузке. 1. Расчет K_0 и tg ϕ . Ввод: $Z_{\pi}=$ P6, $R_{\pi}=$ P7, $X_{\pi}-$ P8.

2. Расчег $Z_{\rm BX}$. Ввод: $2\beta l = {\rm P2}, \ \alpha/\beta = {\rm P3}, \ K_0 = {\rm P4}, \ \phi_{\rm pag} = {\rm P5}.$

F2
$$\uparrow$$
 F5 $-$ P7 F3 \times /-/ Pe^x \uparrow F4 \times P6 2 \times \uparrow F7 Psin \times /-/ P8 F7 Pcos \times P7 F6 Fx² 1 + P6 2 - /-/ P/-/ F6 \uparrow F7 - P6 P, \uparrow F6 \div P7 F8 \uparrow F6 \div P8 Fx² \uparrow F7 Fx² + Fy P6 C/ Π B Π P0

Контрольный пример: вычислить параметры линии при $Z_{\pi}=75$ Ом. $R_{\rm H}=50$ Ом, $X_{\rm H}=30$ Ом, $\alpha=0.01$ Нп/м, $\beta=1$ рад/м и $t=\pi/10$ м Введя программу 1 и ее исходные данные, нажав клавишу С/П, получим на индикаторе число 180. Из регистра 4 вызываем значение $K_0=0.3037835$, из регистра 7 вызываем значение tg $\phi=-2.022471$ (время счета — около 10 с). Последнему соответствует $\phi=2.0299896$ рад. Вводим программу 2 и ее исходные данные $2\beta l=\pi/5$, $\alpha/\beta=0.01$, $\phi=2.0299896$ рад. Нажимая клавишу С/П, получаем $|Z_{\rm Rx}|/Z_{\pi}=1.097909$, из регистров 7 и 8 вызываем составляющие $R_{\rm Bx}/Z_{\pi}=0.9185060$ и $X_{\rm Bx}/Z_{\pi}=0.6014585$.

Программа БПЗЗ. Расчет колебательных контуров.

1 Расчет параметров последовательного контура. Ввод: L=P2, C=P3. Q=P4, $\Delta f=PX$.

Для $L=2.533\cdot 10^{-6}$ Гн, $C=100\cdot 10^{-12}$ Ф, Q=100, $\Delta f=10\,000$ Гп получим $f_0=1\,000\,$ ОЈ 5 Гц, $f=1\,010\,005$ Гц, $\xi=1,990$ 38, $K_i=0.4489943$ r=15,9154 Ом, $Z_{\rm BX}=35,44677$ Ом.

2. Расчет параметров параллельного контура. Ввод: L=P2, C=P3

Q = P4, $\Delta f = PX$

Для $L=2,533\cdot 10^{-9}$ Гн, $G=100\cdot 10^{-19}$ Ф, Q=100, $\Delta f=10\,000$ Гц получаем $f_0=1\,000\,005$ Гц, $f=1\,010\,005$ Гц, $\xi=1,99008$, $K_i=0,4489943$, $R_0=159154$ Ом, $|Z_{\rm BX}|=71459,24$ Ом.

3. Расчет параметров нагруженного контура. Ввод $f_0 = P2$, C = P3, f = P4, $R_H = P5$.

Для $f_0=10^8$ Гц, $C=100\cdot 10^{-12}$ Ф, r=10 Ом, $R_{\rm H}=5\cdot 10^5$ Ом получаем $L=2,533\cdot 10^{-4}$ Гн, $\rho=1592$ Ом, $Q_{\rm H}=106$, $d_{\rm H}=9.47\cdot 10^{-3}$. $2\Delta f=9466$ Гц (округленно)

Программа БП34. Расчет резонансной кривой n-каскадного усилителя с идентичными связаниыми контурами. Ввод: $p_{\rm CB}={\rm P2},~\xi_0={\rm P3},~\Delta\xi={\rm P4},~n={\rm P5}.$ Результат: ξ и K

F3
$$\uparrow$$
 F4 $+$ P3 C/ Π Fx² /—/ P6 F2 Fx² \uparrow F6 \div 1 $+$ Fx² P6 F3 Fx² 4 \times \uparrow F6 $+$ Fy P6 F2 Fx² 1 $+$ \uparrow F6 \div P6 F5 \uparrow F6 \star Y C/ Π B Π P0

Контрольный пример: $\rho_{\mathrm{CB}}=1$, $\xi_0=0$, $\Delta\xi=0.5$, n=1. Получаем, важимая клавишу С/П, $\xi_1=0.5$, $K_1=0.992275$ $\xi_2=1$, $K_2=0.894428$, $\xi_3=1.5$ $K_3=0.664364$ $\xi_4=2$ $K_4=0.447214$ и т. д.

Программа БП35. Расчет резонансной кривой n-каскадного усилителя с идентичными связанными контурами, нормированной относительно максимального значения, по формулам (6.24) и (6.25). Ввод: $p_{\rm cB}=P2$ $\Delta\xi=P4$, n=P5, $\xi_0=P0$ Результат: ξ и K.

$$P3$$
 Fx^2 /—/ $P6$ $F2$ Fx^2 ↑ $F6$ + 1 + Fx^2 $P6$ $F3$ Fx^2 4 × ↑ $F6$ + Fy — $P6$ $F2$ 2 × ↑ $P6$ ÷ $P6$ $F5$ ↑ $P6$ x^y $P6$ ↑ $P6$

Контрольный пример: $p_{\mathrm{CB}}=1.5$, $\Delta\xi=0.5$, n=1, $\xi_0=0$. Получаем $K_0=0.923075$, $\xi_1=0.5$, $K_1=0.948682$, $\xi_2=1$, $K_2=0.996544$. $\xi_3=1.5$, $K_3=0.948682$, $\xi_4=2$, $K_4=0.737154$, $\xi_5=2.5$. $K_5=0.514495$ и т. д.

Программа БП36. Расчет резонансной кривой n-каскадного ($n \le 4$) избирательного усилителя с взаимно расстроенными идентичными контурами Ввод: $f_{01} = \text{P2}$, $f_{02} = \text{P3}$, $f_{03} = \text{P4}$, $f_{04} = \text{P5}$. f = P0 (добротность Q = 30 вписана в программу как число 030)

Инструкция. При n=3 по адресам 04 и 05 записать РНОП и 1, при n=2 то же записать по адресам 13 и 14. Значение Y(f) получаем, набрав f=P0 и нажав клавишу C/Π , и т. д

Контрольный при иер: $f_{01}=97\,$ МГи, $f_{02}=98\,$ МГи. $f_{03}=102\,$ МГи. $f_{04}=103\,$ МГи, $Q=30\,$ Получае і

ř, MΓu	95	96	97	98	99	100	101	102	103	104	105	106
$Y(f)$, 10^{-2}	1,33	3,26	7,17	10,4	10,2	9,66	10,3	10,4	7, 33	3,53	1,570	0,764

Программа БП37. Расчет кривой избирательность 3 каска ного усилинеля с взаимно расстроенными контурами с разной добротностью. Ввод: $f_{01}=$ P2, $f_{02}=$ P3, $f_{03}=$ P4 $Q_{1,2}=$ P5, $Q_{3}=$ P6, f= P0.

Компольный пример: $f_{01}=110$ МГц, $f_{02}=90$ МГц $f_{03}=100$ МГц $O_{1/2}=20,\ Q_3=10.$ Получаем:

f, MI'u	80	84	8 8	92	96	100	104	108	112	116	120
$Y(f), 10^{-2}$	0,35	0,86	2,98	5,32	5,04	5,84	5,44	5,93	3,68	1,31	0,62

Пр гламма БПЗ8. Расчет кривой избирательности комбинерованного УПЧ по (6 20). Ввод: $Q_1=P2,\ Q_2=P3,\ Q_3=P4,\ k_{\rm ch}=P5,\ v=2\,Mf=P0.$

Кочтрольный поимер: $Q_1=Q_2=100,\ Q_3=50,\ k_{\rm CR}=0.09$ Получем

ν	0	0,005	0,01	0,015	0,02	0,025	0,03	0,035	0,04
Y	1	1,03	1,12	1,21	1,04	0,588	0,267	0,122	0,06

Программа БПЗ9. Расчет u_2 (t) дифференцирующей RC-цели при линейном парастающем u_1 (t). Ввод: $\tau=$ P2, $t_{\Phi 0}=$ P3, E= P4 $\Delta t=$ P5, $t_0=$ PX. Результат: t и u_3 (t)

P3 /-/
$$\uparrow$$
 F3 + P6 Px \geqslant 0 P, F2 \div Pex /-/
1 + \uparrow F4 \times \uparrow F2 \times \uparrow F3 \div P7

BD /-/ F6 \uparrow F2 \div Pex \uparrow F7 \times $^{\land}$ P6

F8 \uparrow C/D F6 C/D F \rangle + BD P0

Косторольный пример: $\mathbf{\tau}=1$ с, $t_{\Phi 0}=1$ с, E=10 В, $\Delta t=0.5$ с. $t_0=0$. Получаем: u_2 (0) = 0 u_2 (0.5) = 3,934693, u_2 (1) = 6,321205, u_2 (1.5) = 3,634 34 u_2 (2) = 2,325441, u_2 (2,5) = 1,410451, u_2 (3) = 0,8554821 м $\mathbf{\tau}$. \mathbf{L}

Программа БП40. Расчет $u_2(t)$ дифференцирующей RC-цепи при экспоненциальном $u_1(t)=E(1-e^{-t/\tau}\phi)$. Ввод: $\tau=P2$. $\tau_{\phi}=P3$, E=P4, $\Delta t=P5$, $t_0=PX$. Результат: t и $u_2(t)$.

Контрольный пример: $\tau=1$ с, $\tau_{\Phi}=1$ с, E=10 В, $\Delta t=0.5$ с, $t_0=0.5$ Получаем: u_2 (0) = 0, u_2 (0.5) = 3.032653, u_2 (1) = 3.678795, u_2 (1.5) = 3.340953, u_2 (2) = 2.706706, u_2 (2.5) = 2.052125, u_2 (3) = 1.493612 При $\tau=2$ с и указанных других исходных данных u_2 (0) = 0, u_2 (0.5) = 3.445402, u_2 (1) = 4.773024, u_2 (1.5) = 4.984728, u_2 (2) = 4.650884, u_2 (2.5) = 4.088396, u_2 (3) = 3.466862 и т. д.

Программа БП41. Расчет $t_{\rm M}$ и $k_{\rm M}$ двухэкспоненциального импульса и U_m/E дифференцирующей цепи по (7.10)—(7.12). Ввод: $\tau={\rm P2},~\tau_{\Phi}={\rm P3}$

Контрольный пример: $\tau=5$ мкс, $\tau_\Phi=1$ мкс. Получаем: $t_{\rm M}=2.011796$ мкс. $k_{\rm M}=0.5349934$, $U_m/E=0.6687417$.

Программа БП42. Расчет активной длительности $t_{\rm H}$ двухэкспоненциального импульса по (7.14) и (7.15). Ввод: $\tau={\rm P2},\ \tau_{\Phi}={\rm P3}$

Контрольный пример: $\tau=5$ мкс, $\tau_{\Phi}=1$ мкс. Получаем $t_{\rm H}=5.9$ мкс (при $\tau=30$ мкс, $\tau_{\Phi}=1$ мкс, $t_{\rm H}=24$ мкс).

Программа Б П43. Расчет переходной характеристики a (τ) многокаскадного (n=3 . . 6) усилителя в области малых времен по (7.21). Ввод: $k_3=P3$, $k_4=P4$ $k_5=P5$ $\tau=PX$.

P2 F
$$x^2$$
 2 ÷ P6 3 ↑ F2 x^y ↑ F3 × P7 4 ↑ F2 x^y ↑ F4 × P8 5 ↑ F2 x^y ↑ F5 × ↑ F8 + ↑ F7 + ↑ F6 + ↑ F2 + 1 + P8 F2 /—/ Pe* ↑ F8 × /—/ 1 + C/Π БΠ P0

Контрольный пример: $n=6,\ k_3=0.167$ $k_4=4.17\cdot 10^{-2},\ k_5=8.33\cdot 10^{-3}$. Получаем:

τ	1	2	3	4
<i>a</i> (τ)	4,603.10-4	1,61449.10-2	8,33778.10-2	0,2143851
τ	5	6	8	10
a (t)	0,3836906	0,5541009	0,8086974	0,9328989

Программа БП44. Расчет $u_C(t)$ и $u_R(t)$ линейной RC-пепи при ваданных лискретных значениях, $u_{\rm BX}(0)={\rm P4},\ u_{\rm BX}(t).$ Ввод: $\theta=0={\rm P2},\ H={\rm P3}.$ $u_R(0)={\rm P5},\ u_C(0)={\rm P6},\ u_{\rm BX}={\rm PX}.$

Контрольный пример: см. в § 7.2 (рис. 7.3).

Программа БП45. Расчет $u_C(t)$ и $u_R(t)$ RC-цепи при заданном дискрет пыми значениями $u_{\rm BX}(t)$ комбинированным методом Эйлера. Ввод: 0 = P2, $\Delta t = P3$, $\Delta t/\tau = P4$, $u_C(0) = P5 = P6$, $u_{\rm BX}(0) = P7$ и $u_{\rm BX}(t) = PX$.

Контрольный пример: сл. в § 7.2.

Программа Б П46. Расчет t, $u_{\rm RX}(t)$, $u_{R}(t)$ и $u_{C}(t)$ нелинейной RC-цепи при экспоненциальном входном сигнале. Ввод: $0={\rm P2},~\Delta t={\rm P3},~u_{C}(0)={\rm P4},~RC_0={\rm P5},~\tau_{\rm BX}={\rm P6},~U_{m}={\rm P7},~\phi_{\rm R}={\rm P8}.$

Контрольный пример: см. § 7.2.

Программа БП47. Расчет переходного процесса u (t) при переключении туннельного диода импульсами тока по (7.31). Ввод: $I_{\rm BX}=$ P2, -A= P3, u (0)= P4, D= P5, $C_0=$ P6, $\Delta t=$ P7.

Контрольный пример: см. в § 7.3 (рис. 7.5). Рекомендуется предваритольно составить таблицу t_n .

Программа Б П48. Расчет переходного процесса u(t) переключающей схемы на тупнельном диоде по (7.32). Ввод: E (0) = P2, A = P3, u (0) = P4, D = P5, C = P6, Δt = P7, R = P8.

F4 1 0
$$\times$$
 /—/ Pe^x \uparrow F4 \times \uparrow F3 \times P, F4 0 , 0 5 5 \div Pe^x 1 — \uparrow F5 \times \uparrow P/—/ + /—/ P, F2 \uparrow F4 — \uparrow F8 \div \uparrow P/—/ + \uparrow F6 \div \uparrow F7 \times \uparrow F4 + P4 C/ Π P2 \to \to \to P

 $\mathit{Инструкция}.$ После получения каждого значения u (t) набирается новое значение E (t) на цифровых клавишах.

Контрольный пример: см. в § 7.3 при $R=200~{\rm Om}$ (рис. 7.6). Рекомендуется предварительно составить таблицу t_n .

Программа 6П49. Равчет постоянных временя τ_{BKD} , τ_{D} в τ_{BMKD} ключа на бипелярном транзиеторе по (7.36)—(7.38). Ввод: $\tau_{T}=P2$, $\overline{C}_{R6}=P3$, $(\beta_{N}+1)=P4$, $R_{R}=P5$

Примечание. После вычисления $\mathfrak{t}_{\mathrm{BMRD}}$ значения $\mathfrak{t}_{\mathrm{BRD}}$ $\mathfrak{t}_{\mathrm{p}}$ и $\mathfrak{t}_{\mathrm{BMRD}}$ ваносятся в регистра 2,3 и 4

Контрольный пример см в § 7.4

Программа БП50. Расчет времен $t_{\rm BKJ}$, $t_{\rm p}$ и $t_{\rm BMKJ}$ ключа на биполярном транзисторе по (7.33) — (7.39). Ввод: $\tau_{\rm BKJ} = {\rm P2}$ $\tau_{\rm p} = {\rm P3}$ $\tau_{\rm BMKJ} = {\rm P4}$ $I_{\rm 01} = {\rm P5}$, $I_{\rm 02} = {\rm P7}$.

Инструкция Рекомендуется вводить программу после выполнения вычислений по программе БП49. не выключая микрокалькулятора. В этом случае ввод $\tau_{\rm BKD}$, $\tau_{\rm p}$ и $\tau_{\rm BMKD}$ не требуется.

Контрольный пример см. в § 7.4.

Программа БП51. Расчет $i_{\rm R}(t)$ ключа на биполярном транзисторе при линейном нарастании и снаде тока базы. Ввод: $\iota_{\rm R}(\infty)={\rm P2},\ \alpha={\rm P3},\ \iota_{\rm R}(0)={\rm P4}.$ $\tau_{\rm B}={\rm P5},\ \Delta t={\rm P6},\ 0={\rm P7},\ \iota_{\rm \Phi}={\rm P8},\ 0={\rm P/-/}.$ Результат $\iota_{\rm R}(t)$ и t.

Контрольный пример: см. в § 7.4 (рис. 7.9).

Программа Б П52. Расчет $i_{\rm R}$ (t) ключа на биполярном транзисторе при экспоненциальном нарастании и спаде тока базы. Ввод: $l_{\rm OK}={\rm P2}.~l_{\rm KM} \Rightarrow {\rm P3},~l_{\rm R}$ (0) \Rightarrow = P4, $\tau_{\rm BX}={\rm P5},~\tau_{\rm B}={\rm P6}~~\Delta t={\rm P7},~0={\rm P8}.$ Результат t и $t_{\rm R}$ (t)

Контрольный пример: вм. в § 7.4 (рис. 7.10).

Программа БП53. Расчет переходного процесса переключения ключа на маломощном полевом транзисторе. Ввод: E=P2, $u_{\rm BX}(0)=P3$, b'R=P4, k=P5, $\Delta t/\tau=P6$, 0=P7, u(0)=P8. Результат: N, $(U_3-U_0)_{n-1}$, u.

Инструкция. На каждом шаге первое нажатие клавиши С/П дает вначение N, второе — (U_3-U_0) . Если $(U_3-U_0)_n$ отлично от $(U_3-U_0)_{n-1}$, то первое значение набирается на цифровых клавишах и клавиша С/П нажимается третий раз (получаем u и т u.).

Контрольный пример; см. в § 7.5 (рис. 7.12).

Программа БП54. Расчет переходного процесса переключения ключа на мощном МДП-транзисторе Ввод: E=P2. $U_3=P3$ $R_cS=P4$, p=P5, t = P6 $\Delta t = P7$ u(0) = P8, 0 = P/-/ Результат: $t_n = U_3(t_{n-1})$ и $u(t_n)$.

Инструкция. При вычислениях нельзя задавать $U_3=0$ (в этом влучав зядается малое значение $U_{\mathbf{3}}$, иапример 0,001 В), порядок вычислений см. в инструкции к программе БП53.

Контрольный пример: см. в § 7.6 (рис. 7.13).

Программа БП55. Расчет переходного процесса переключения ключа на мощном МДП-транзисторе е индуктивностью в цепи стока. Ввод: $\Delta t/C = P2$, $\Delta l/l = P3$. $E_G = P4$, $R_0 = P5$ $-U_3 = P6$. l(0) = P7, u(0) = P8, 0 = Pl-l. Pesy π rat: n и u (i = P7)

Инструкция Значение p = 2.0 и S = 0.030 A/B вписаны в программу. Нельзя задавать $-U_3 = 0$ (можно задать $-U_3$ близким к нулю например — 0,001 B) На каждом шаге выдается номер шага л и и (значение / можно вызвать из регистра 7 после вывода u).

Контрольный пример: вм. в § 7.6 (рис 7.13)

Программа БП56. Расчет времени переключения ключа на полевом тр нзисгоре численным интегрированием Ввод: $E_C = P2$. $I_{CM} R = P3$ $u_H = P4$ $\Delta u =$ $= P5 0 = P6 u_{R} =$

Инструкция Значение Δu должно выбираться как целая часть ($u_{\rm H} - u_{\rm R}$), янак Δu отрицателен, если u (t) падает, и положителен, если u (t) растет

Контрольный пример: см в § 77 (табл 7.2)

Программа Б П57. Расчет реакции LC-контура на экспоненциальный перепад тока. Ввод: $\Delta t/L = P2$, $\Delta t/C = P3$, $\hat{r} = P4$, $\hat{R} = P5$ u(0) = P6, $i_1(0) = P7, 0 = P8$ Результат: $n, i(t_n), u(t_n)$ и $i_1(t_n) = P7$.

Контрольный пример: см. в § 7.8 рис. 7.15).

Программа БП58. Расчет реакции LC-контура на линейно нарастающий перепад тока. Ввод: $\Delta t/L = P2$, $\Delta t/C = P3$, r = P4, R = P5. u (0) = P6. i_1 (0) = = P7, 0 = P/—/. Результат: n, u (t_n) и l_1 (t_n) = P7

Контрольный пример: см. в § 7.8 (рис. 7 16).

Программа БП59 Расчет переходного процесса в последовательным LG-жонтуре Ввод: L=P2, C=P3 R=P4, $\Delta t=P5$. E(0)=P6 u(0)=P7. I(0)=P8, 0=P/-I Результат: n, $I(t_n)$ и $I(t_n)$

Инструкция После вычисления на каждом шаге значений n t (t_n) и u (t_n) следует на цифровых клавишах набрать очередное значение E (t) При E (t) = const целесообразно исключить команду P6 третью с конца, тогда E заносится в регистр 6 один раз Контрольный пример: см. § 7.8 (рис 7.17)

Программа ВП60. Расчет переходного процесса в последовательном не линейном LC-контуре. Ввод: L=P2 $C_0=P3$. R=P4 $\Delta t=P5$ E (0)=P6, u (0)=P7, i (0)=P8 0=P/-/ Результат: n, i (i_n) u u (t_n)

Инструкция. Значения $\phi_R=0.4~\mathrm{B}$ и $V_0=10~\mathrm{B}$ вписаны в программу. Порядок работы соответствует инструкции к программе БП59

Контрольный пример: см. в § 7.8 (рис. 7.18)

. Программа БП61. Расчет установления амплитуды LC-генератора. Ввод: $2 |\alpha_{\rm BKB}| = P2$, $\nu_{\rm BKB} = P3$, $U_0 = P5$, 0 = P6, $\Delta t = P7$. Результат / и U (t) ($U_{cm} = P4$).

Контрольный пример: при $2|\alpha_{\rm BKB}|=1$, $\nu_{\rm BKB}=0.1$, $U_0=0.2$, $\Delta t=0.5$ (единицы везде безразмерные) получаем $U_{\rm cm}=6.324$, при t=0.5 U=0.2567218, при t=1 U=0.3294613 и т. д. (см. также рис. 7.19).

Программа БП62. Расчет реакции видеоусилителя со сложной коррекцией на заданный таблично входной сигнал $(R_i=\infty,\ R_{\rm H}=\infty)$. Ввод: i (0) = P2, i (0) = P3, i (0) = P4, u (0) = P5, u (0) = P6, $\Delta t/L_1$ = P7. $\Delta t/L_2$ = P8. Результат: u (t).

Инструкция Значения $\Delta t/C_1=40$, $\Delta t/C_2=10$ и R=100 вписаны в программу. После получения u_{2n} очередное значение i набирается на цифровым клавишах. При $i=0,01=\mathrm{const}$, $\Delta t/L_1=\Delta t/L_2=2\cdot 10^{-3}$, i_1 (0) =0, i_2 (0) =0, u_1 (0) =0, u_2 (0) =0 получаем значения u_2 при каждом нажатии клавиши $C/\Pi\cdot 0.8\cdot 10^{-3}$; $3.104\cdot 10^{-2}$; $7.43744\cdot 10^{-2}$; $1.408609\cdot 10^{-1}$ в т. д.

Программа БП63. Расчет реакции видеоусилителя со сложной коррекци ей на заданный таблично входной сигнал ($R_{\rm H}=\infty$). Ввод: i (0) = P2, i_1 (0) = P3, i_2 (0) = P3, u_1 (0) = P5, u_2 (0) = P6, $\Delta t/L_1$ = P7. $\Delta t/L_2$ = P8. Результат u_2 (t).

Инстрикция. Значения $R_i = 500$, $\Delta t/C_1 = 40$ и $\Delta t/C_2 = 5$ и R = 100вписаны в программу. После получения u_{2n} очередное значение i набрать на цифровых клавишах.

Контрольный пример: $\iota=0.01=\mathrm{const},\ \iota_1\ (0)=0,\iota_2\ (0)=0,\ u_1\ (0)=0,\ u_2\ (0)=0,\ \Delta t/L_1=\Delta t/L_2=2\cdot 10^{-3}.$ Получаем, нажимая клавишу С/П, значения $u_2:4\cdot 10^{-3};\ 1.528\cdot 10^{-2};\ 3.6128\cdot 10^{-2};\ 6.768412\cdot 10^{-2};\ 1.099054\cdot 10^{-2}$

Программа БП64. Расчет реакции видеоусилителя со сложной коррекцией на заданный табличио входной сигнал ($R_t = \infty$). Ввод: i (0) = P2, i_1 (0) = P3, $i_2(0) = P4$, $u_1(0) = P5$. $u_2(0) = P6$, $\Delta t/L_1 = P7$, $\Delta t/L_2 = P8$. Результат: $u_{2}(t)$

Инструкция Зпачения $\Delta t/C_1=40,~R_{\rm H}=500,~\Delta t/C_2=10$ и R=100 вписаны в программу. После получения u_{2n} очередное значение ι набрать на цифровых клавишах.

Контрольный пример: см. в § 7.10 (рис. 7.21).

Программа БП65. Расчет переходного процесса линейной цепи 1-го порядка с применением интеграла суперпозиции при табличном задании входного воздействия. Ввод: 0 = P2, $\tau = P3$, 0 = P4, $\Delta\theta = P5$, 0 = P6, t = P7, 0 = P/-/. Результат u_{BXR} (u = P6).

Инструкция: После ввода исходных данных нажать клавиши В/О и С/П, на индикаторе высвечивается $u_{\text{BX}0}=0$. Набрать значение $u_{\text{BX}1}$ и нажать клавишу С/П. После обработки этого отсчета он высвечивается на индикаторе. Набрать u_{BY2} , нажать клавишу С/П и т. д. (до ввода и обработки всех отсчетов u_{BY}). Вызвать значение u (t) из регистра 6, нажав клавиши F и 6. Контрольный пример: см. в § 7.11.

Программа БП66. Расчет переходного процесса линейной цепи 1-го порядка с применением интеграла суперпозиции при аналитически заданном входном воздействии (экспоненциальном). Ввод $\tau_{\rm BX}={\rm P2},\ \tau={\rm P3},\ 0={\rm P4},\ \Delta\theta={\rm P5},$ 0 = P6, t = P7. Результат: u(t).

Контрольный пример: см, в § 7.11.

Программа 6П67. Расчет переходного процесса автоколебательного мультивибратора на туннельном диоде. Ввод: $\Delta t/C = P2$, $\Delta t/L = P3$, E = P4, A = P5, D = P6, u(0) = P7, i(0) = P8. Результат: i_n и u_n .

Примечание. Рекомендуется перед началом вычислений составить $ag{raf}$ лицу значений t_n .

Контрольный пример: см. в § 8.1 (рис. 8.2),

Программа 6П68. Расчет переходного процесса ждущего мультивибратора **та тун**нельном диоде. Ввод: $\Delta t/C = P2$, $\Delta t/L = P3$. E = P4. A = P5, D = P6, u (0) = P7. i (0) = P8

Инструкция Значения $\beta=20~1/B$, $\alpha=10~1/B$ и R=10~0м вписаны в **врогр**амму. Перед вычислением вносим u (0) в регистр 7 ч, нажимая клавищи **В/О** и С/П, получаем i (0). Вычисляем вручную $E=[u\ (0)+\iota(0)\ R]$ и заносим в регистр 4. Заносим t (0) в регистр 8. Далее, набирая на каждом шаге зна ченин i_{3811} (в амперах, не используя клавишу ВП) и нажимая два раза клавишу С/П, получаем u и t и t. д.

Контрольный пример см. в § 8.1 (рис. 8.3).

Программа БП69. Расчет t_1 автоколебательного мультивибратора на гуннель ном дноде. Ввод $U_{0R}=P2$, $U_{1R}=P3$, $U_{2R}=P4$, E=P5, $(I_{\Pi}-I_{B})=P6$, L=P7. Результат e, t_1/τ_L , t_1 и $m_1=P8$.

Контрольный пример: см. в конце § 8.1.

Программа БП70. Расчет t_2 автоколебательного мультивибратора на гунвельном диоде. Ввод: $U_{3R}=P2,\ U_{1R}=P3,\ U_{2R}=P4,\ E=P5,\ (I_\Pi-I_B)=$ = P6, L=P7 Результат: $e,\ t_2/\tau_L,\ t_2$ и $m_2=P8$.

Контрольный пример: см. в конце § 8.1.

Программа БП71. Расчет $\eta_R=P2$, и $U_\pi=P3=PX$ релаксатора на однопереходном гранзисторе. Ввод: $\eta=P2$, $R_1=P3$. $R_2=P4$. $R_{66}=P5$, $I_\Pi=P6$, $I_{20}=P7$.

 Π р и м е ч а н и е . Значение $m\phi_T=0,050$ В вписано в программу.

Контрольный пример: см в конце § 8.2.

Программа БП72. Расчет U_{Π} , t_{8} , t_{p} , t_{0} и Q релаксатора на однопереходном транзисторе. Ввод: $\eta_{R}=$ P2, $U_{\Pi}=$ P3, $U_{B}=$ P4, E= P5, RG= P6, $R_{p}C=$ P7.

Примечание. Если предварительно выполнялась программа БП71, то значения η_R и U_{a} могут не вводиться.

Контрольный пример: см. в конце § 8.2.

Программа БП73. Расчет переходных процессов ждущего релаксатора на лавинном транзисторе Ввол: $\Delta t/L = P2$. $\Delta t/C = P3$, $t_6 = P4$, $U_M = P5$, $\alpha_0 = P6$, $t_R(0) = P7$, $u_C(0) = P8$. Результат: u_T , $t_R = u_C$.

Примечание. Значения n=3 и R=90 Ом вписаны в программу. Контрольный пример см. в § 8.3 (рис. 8.7).

Программа 6Л74. Расчет переходных процессов ждущего релаксатора на лавинном транзисторе методом динамического пробоя. Ввод: 0=P2, $\Delta t/L=P3$, $\Delta t/C=P4$, $\alpha=P5$, $U_M=P6$, u_C (0) = P7, i (0) = P8. Результат: u_T , i в u_C .

F2 0 , 2 + P2 /—/ Pe* /—/
$$1$$
 + ↑ F5 × /—/ 1 + P, 3 F1/x ↑ P/—/ x^{y} ↑ ↑ F7 + ↑ F3 × ↑ F8 + P8 C/D ↑ F4 × /—/ ↑ F7 + P7 C/D 6D P0

Примечание. Значения $\Delta t/\tau_{\rm T}=0.2,\;n=3,\;$ и $R=90\;{\rm Om\; вписаны}$ в программу.

Программа 6П75. Расчет временных параметров автоколебательных мультивибраторов.

1 Расчет $t_1/(RC)$ и $t_2/(RC)$ мультивибратора (см. рис. 8.8, a). Ввод: R = P2, $R_{0, M, T} = P3$, $U^0 = P4$, $U^1 = P5$, $U_{\Pi} = P6$, $I_{BX}^1 = P7$.

2. Расчет β , $t_{g'}$ (RC), $t_{p'}$ (RC) и $t_{g'}$ (RC) мультивибратора (см. рис. 8.9,a). Ввод. $R_1 = P2$, $R_2 = P3$, $U_{\rm M}^+ = P4$, $U_{\rm M}^- = P5$.

3. Расчет $t_3/$ (RC), $t_{\rm p}/$ (RC), $\beta_1={\sf P7}$ и $\beta_2={\sf P8}$ мультивибратора (см. рис. 8.10,а). Ввод: $R_1={\sf P2},\ R_2={\sf P3},\ R_3={\sf P4},\ R_4={\sf P5},\ U_{\sf M}^+/U_{\sf M}^-={\sf P6}.$

4. Расчет $t_1/(R_3C),\ t_2/(R_4C),\ U_h=$ P7, $U_l=$ P8 мультивибратора (о м) рис, 8.11, a). Ввод: $R_1=$ P2, $R_2=$ P3, $U_H=$ P5, $U_L=$ P6.

F2
$$\uparrow$$
 F3 $+$ F1/x \uparrow F2 \times P8 \uparrow F5 \times P7 F8 \uparrow F6 \times P8 F7 \uparrow F5 $-$ P4 F8 \uparrow F5 \uparrow F4 \div Pl $_{\Pi}$ C/ $_{\Pi}$ F8 \uparrow F6 $-$ P4 F7 \uparrow F6 \uparrow F4 \div Pl $_{\Pi}$ C/ $_{\Pi}$

Программа БП76. Расчет временных параметров ждущих мультивибраторов. 1. Расчет $t_w/(RC)$ в $t_{\rm B}/(RC)$ мультивибратора (см. рис. 8,12,a). Ввод: R = -P2, $R_{\rm 6.~M \cdot T} = P3$, $U^1 = P4$, $U^0 = P5$ $U_0 = P6$, E = P7.

2. Расчет $t_{W}/(RC)$ мультивибратора (см. рис. 8.13,*a*). Ввод. R = P2, $U^{0} = P3$, $U^{1} = P4$, $U_{0} = P5$, $I_{BX}^{1} = P6$.

F2
$$\uparrow$$
 F6 \times \uparrow F5 $+$ $/$ —/ \uparrow F3 $+$ P8 F3 \uparrow F4 \uparrow F8 \div PIn C/П

8. Расчет $U_{\text{ос}}^1$ и $I_{\text{H}}/(RC)$ мультивибратора (см. рис. 8.14). Ввод: $R = P_{\text{L}}^2$ $R_1 = P_{\text{R}}$, $R_2 = P_{\text{L}}$, K_U , $U^0 = P_{\text{L}}$, $U^0 = P_{\text{L$

 Π р и м е ч а и и е . В регистр 5 вводится $\mathcal{K}_{m{U}}$, после расчета U_{od}^1 в него вводится U^0 , а $I_{\text{BX}}^1 = \mathsf{PX}$.

4. Расчет $t_{\rm g}/$ (C ($R+R_{\rm p}$)) мультивибратора (см. рис. 8.15). Ввод ($K+R_{\rm p}$) = P2, E= P3, $U^0=$ P4, $\eta_1=$ P5. $I_{\rm BX}=$ P6.

Программа 6П77. Расчет начальных моментов $m_1 \dots m_4$ среднего значения π , дисперсии D_0 и числа введенных отсчетов N случайных величин. Ввод: 0 = P2 = P3 = P4 = P5 = P6 $x_n = PX$. Результат x, D_0 , $m_1 = P2$, $m_2 = P3$, $m_3 = P4$, $m_4 = P5$ N = P6, (N-1) = P7 и $m_1^3 = P8$

Контрольный пример: введя программу и нажав клавиши Р РР и В/О, вводим случайные числа 9; 8; 10; 9; 11; 12; 10; 10; 9 и 11 (в кон те каждого вводя нажимается клавиша С/П). Получаем, пажимая клавиши БП Р5 С/П и еще раз С/П, следующие результаты: $\overline{x} = 9.9$; $D_0 = 1.433333$ $m_1 = 9.9$. $m_2 = 99.3$; $m_3 = 1008.9$; $m_4 = 10379.7$: N = 10 и (N-1) = 9

Программа БП78. Расчет асимметрии S и эксцесса E случайных чисел. Вводи $m_1=P2,\ m_2=P3,\ m_3=P4,\ m_4=P5,\ m_1^2=P8$ (при выполнении перед дажной программой грограммы БП77 ввод не требуется)

Контрольный пример: при $m_1...m_4$, вычисленных в примере предшествующей программы, получаем $S=1,965657\cdot 10^{-1};\ E=-7,519427\cdot 10^{-1}$.

Программа БП79. Обработка массива случайных чисел x_n для построения чистограмм их распределения Ввод: $x_n = PX$

Контрольный пример введя программу, нажимаем клавиши P, PP, B/O в \mathbb{C}/Π , вводим числа 3, 4; 5, 5,5, 5,8, 6, 6,2, 6,7, 7.5, 8; 8,9; 10.5 Получаем числа 2 = P2 3 = P3 3 = P4 1 = P5, 2 = P6 и 1 = P7

Программ 1 П80. Формирование случайных чисел

1 С равномерным распределением Y_n и X_n Ввод a= P5, b= P6, $V_0=$ PX

P2 3 7
$$\times$$
 P3 1 B Π / XY + XY - $(-1)^{1}$ \uparrow F3 + P3 F2 C/ Π F6 \uparrow F5 - \uparrow F2 \times † F5 + C/ Π F3 B Π P0

2 С экспоненциальным, сдвинутым экспоненциальным, Вейбулла и Рэлея законами распределения Ввод $b=P4, x_0=P5, y=P6, \sigma=P7, \lambda=P8, V_0=PX$

3 С нормальным распределением (мегод Неймана) Ввод $c=P4,\ \vec{x}=P5$, $g=P6,\ V_0=PX$

4 С нормаль іым распределением (метод Муллера) Ввод $\sigma = P4$ x = P5, = PX

Программа БП81. Накопление данных для расчета коэффициентов eta_0 в eta_1 при липейной аппроксимации Ввод $x_n={\sf PX}$ $y_n={\sf PX}$ поочередно

0 P4 P5 P6 P7 C/
$$\Pi$$
 ↑ P2 F4 + P4 F2 Fx ↑ F5 + P5 F2 C/ Π ↑ P3 F6 + P6 F2 ↑ F3 × ↑ F7 + P7 F3 Б Π ↑

Инструкция После ввода программы нажимают клавиши В/О и С/П, на индикаторе высвечивается 0. Затем на цифровых клавишах последовательно набирают значения $x_1, y_1, x_2, y_2,$ и т. д., нажимая после набора клавишу С/П. В регистрах 4. 7 хранятся суммы величин x_n, x_n^2, y_n и x_ny_n

истрах 4 7 хранятся суммы величин х_п, хп у_п и х_{пуп} Контрольный пример см. в § 9 5

Программа БП82. Расчет коэффициентов β_1 и β_0 при линейной аппроксимации Ввод (после выполнения предшествующей программы) N=P8

Контрольный пример: см в \$95

Программа 6.1183. Накопление данных при параболической аппроксимации.

Введя программу нажимаем клавиши Р, РР В/О затем вво-Инструкция дим 0 в регистры 3 4 5 и 6 Набираем последовательно все значения X_n нажи мая в конце ввода каждого значения клавищу С/П (после обработки каждого X_n это значение вновь высвечивается на индикаторе) Вызываем суммы величин X_n, X_n^3, X_n^3 и X_n^4 из регистров 3, 4, 5 и 6 соответетвенно. Нажав клавиши БП и 5, переходим ко второй части вычислений Вводим 0 в регистры 4, 5 и 6 Последовательно вводим попарно значения X_1 Y_1 X_2 Y_2 . X_n Y_n , нажимая при вводе каждого значения клавишу С/П (высвечивается всегда ранее введенное значение X_n пары $X_n \ Y_n$). Результат выводим из регистров 4 5 и 6 в виде сумм величин Y_n , $X_n Y_n \cup X_n^2 Y_n$

Контрольный при нет 🐧 🥫 🗀 🖯

Программа БП84. Вычисление определителя 3-го порядка.

Инструкция. После ввода программы нажимаем клавиши Р, РР В/О Вводим по столбцам (сверху вниз и слева направо) все коэффициенты определителя. нажимая после ввода каждого клавишу С/П После ввода 6-го, 7-го и 8 го коэффициентов на индикаторе высвечивается значение определителя 2-го порядка, который умпожается на последующий коэффициент После ввода 9-го коэффициента получаем значение Δ

Контрольный пример см в § 9.5

Программа БП85. Накопление данных для расчета значений $oldsymbol{eta}_0$ и $oldsymbol{eta}_1$ при стеленной аппроксимации Ввод: x_n , y_n (поочередно)

Инструкция После ввода программы нажать клавищи В/О и С/П (на индикаторе высвечивается 0) Затем ввести последовательно x_1 y_1 x_2 , y_2 x_3 y_3 ит д нажимая в конце каждого ввода клавишу С/П (при этом на индикаторе высвечивается введенное число) Результаты заносятся в регистры $\mathbb C$. 4, 6 и 7 в виде сумм величин $\ln x_n$ ($\ln x_n$)2 $\ln y_n$ и $\ln x_n y_n$ Программа БП86. Расчет значений β_0 и β_1 при степенной аппроксимации

Ввод (после выполнения предшествующей программы) N = P8 Результат. S_0

иβг

F8
$$\uparrow$$
 F7 \times P2 F3 \uparrow F6 \times \uparrow F2 $-$ P2 F4 \uparrow F8 \times P5 F3 Fx^2 \uparrow F5 $-$ F1/ x \uparrow F2 \times C/ Π \uparrow F3 \times / $-$ / \uparrow F6 $+$ \uparrow F8 \div Pe x C/ Π

Контрольный пример. см в § 9 5.

Программа БП87. Накопление данных для расчета значений 3 п в при $\mathfrak g$ кспоненциальной аппроксимации $\mathsf B$ вод $x_n \ y_n$ (поочередно).

Инструкция После ввода программы нажимаем клавиши В'О и С/П ня индикаторе высвечивается ()). Затем вводим последовательно x_1 y_1 , x_2 y x_4 y_3 и т. д. нажимая в конце каждого ввода клавишу C/Π (при этом введенное значение высвечивается на индикаторе). Результаты заносятся в регистры 3. 4. 5, и 6 в виде сумм величин x_n x_n^2 , in y_n и x_n in y_n

Программа БП88. Расчет значений β_0 и β_1 при экспоненциальной аппроксимации Ввод (после выполнения предшествующей программы): N=P8 Результат: β_1 и β_2

Контрольный пример: см. в конце § 9.5.

Программа 6 П89. Цифровое моделирование нелинейного преобразователя функционального генератора Ввод: A = P4, B = P5. C = P6 $\theta_1 = P7$. $\theta_2 = P8$ x (град) = PX. Результат: y (x) и δ_y (x)

Контрольный пример: см. в § 9.6

Программа БП90. Цифровое моделирование тиристорного стабилизирующего выпрямителя Ввод: 0 = P2 $\Delta\alpha_0$ = P3 U_{max} = P4 U_0 = P6, KK_y = P7. Результат: $U_{\rm BMX}$ = PX = P5.

Контрольный пример: см. в § 9.6.

ПРИЛОЖЕНИЕ 2

ПАКЕТ ПРОГРАММ ПРОГРАММИРУЕМОГО МИКРОКАЛЬКУЛЯТОРА «ЭЛЕКТРОНИКА БЗ-34»

Общая инструкция к пользованию прогриммами:

- 1 Для ввода программы нажимаются клавиши F и ПРГ.
- 2 Программа вводится последовательным нажатием клавиш, указанных в тексте программ. Записанных построчно. Операция новорота стека для упрощения типографской формы записи обозначается как F,. Ввод контролируется по кодам, определяемым с помощью табл. П2.1, приведенной в конце данного приложения.
- 3. После ввода программы переход в рабочий режим осуществляется нажатием клавиш F ABT и B/O.
- 4. Последующие правила работы аналогичны приведенным для микрокалькулятора «Электроника БЗ-21» (см. общую инструкцию в приложении 1)
- 5. Для дословного перевода программ на языки рограммирования микрокалькуляторов «Электроника МК-54» и «Электроника МК-56» следует воспользоваться таблицей соответствия символов (см. табл. 1.9)

Программа ПП1/34. Решение системы из трех линейных уравнений методом Крамера. Ввод: см. в § 2,2. Вывод: x_1 x_2 и x_3 .

```
ПП
ПП
                  пп
                         32
                                     64
                                            ИПО
      64
            ПО
                                                         C/II
                                                  C/D
ПП
      32
            ПΠ
                  48
                         ПП
                               64
                                     ипо
                                                         ПП
                               ипо
48
      ИПА
                  ипв
                         П6
                                     П3
                                            пп
                                                  64
            П9
                                                         ипо
                  ИПА
                         П7
                               F.
                                     ПА
                                            ИП4
                                                  ИПВ
÷,
      C/II
            ИП7
                                                        Π4
      \Pi B
                               F,
                                     ПG
                                            B/O
            ИПІ
                  ипс
                         П
                                                  ИП8
                                                         ИПА
                               П5
П8
                         ИПВ
                                     F,
                                           ΠB
                                                  \Pi12
      F
            ПΑ
                  ИП5
                                                         ипс
                               ИП5
      F
                                            ИП4
\Pi_2
            ПС
                  B/O
                         ипі
                                      ×
                                                  \Pi12
                                                        X
                                     ипі
                                           ИП8
      ИП9
                  ИП7
                         ИП2
                                Х
            X
                                                  X
ИП6
      ×
            +
                  ИП4
                         ип8
                                ×
                                     ИП7
                                           ИП5
                                                  ×
ИПЗ
      ×
                  B/O
```

Контрольный пример: см. в тексте § 2.2.

Программа ПП2/34. Решение системы из трех линейных уравнений методом Гаусса. Ввод: см в § 2.2. Вывод: $x_1 = PX = P1$; $x_2 = P2$ и $x_3 = P3$.

ИП4 ИП7
$$\div$$
 ПД ИП5 ИПД ИП8 \times — П5 ИП6 ИПД ИП9 \times — П6 ИПВ ИПД ИПА \times — П8 ИП1 ИП7 \div ПД ИП2 ИПД ИП8 \times — П2 ИП3 ИПД ИП9 \times — П3 ИПС ИПД ИПА \times — ПС ИП2 ИП5 \div ПД ИПС ИПД ИПВ \times — ИП3 ИПД ИП6 \times — \div П3 ИПС ИПД ИПВ \times — ИП3 ИПД ИП6 \times — \div П3 ИПС ИПД ИПВ ИП3 ИП6 \times — ИП5 \div П2 ИПА ИП8 ИП2 \times — ИП3 ИП9 \times — ИП7 \div П1 С/П БП 00

Контрольный пример: см в § 2.2

Программа ПП3/34. Решение нелинейных уравнений.

1. Методом простых итераций. Ввод: $x_0 = PX$, $PA \to r_n$. ПД ИПД .. ИПД ХҮ ПД — Fx = 0 01 ИПД СП

2. Методом половинного деления. Ввод: $\Lambda x_0 = PA$ $\epsilon_1 = PB$. n = PC, $\epsilon^2 = PA$. $\epsilon_2 \rightarrow \epsilon_3$

3. Методом половинного деления при $F\left(a\right)>0$. Ввод: $a=\mathsf{PA}.$ $b=\mathsf{PB},$ $c=\mathsf{PH},$ $\mathsf{PC}\to x_n$

 Π р и мечание N и \overline{M} — номера шагов команд $\overline{M\Pi C}$ и $\overline{M\Pi B}$ соответственно при полном тексте программы

4. Методом поразрядного приближения Ввод: $x_0 = \mathsf{PA} \ \Delta x_1 = \mathsf{PB}, \ \epsilon = \mathsf{PC}, \ \mathsf{PA} \to x_n$

ИПА ПП 34 ПС ИПВ ПП 34 ПД ИПА ИПО
$$\uparrow$$
 ИПД ПС XY — \div ИПА ИПВ — X + ИПВ XY ПВ XY ПА — Fx^2 ИПО — $Fx < 0$ 04 ИПВ С/П В/О

 $^{^*}M$ — показатель разрядности, на который делится Δx_N .

^{5.} Комбинированным зетодом секущих — хорд. Ввод: $x_0 = PA$. $x_1 = PB$, $\varepsilon^2 = PO$, $PX \to x_n$ (вносится в начало программы).

6 Методом Эйткена — Стеффенсона с ускоренной сходимостью. Ввод: $\mathbf{z}_0 = \text{PO}, \, e^2 = \text{PB}, \, \text{PX} \rightarrow \mathbf{z}_n.$

ИПО ПП 33 ПА ПП 33 † ИПО
$$\times$$
 ИПА Fx^2 — XY ИПО $+$ ИПА 2 \times — $Fx \neq 0$ 31 \div ИПО XY ПО — Fx^2 ИПВ — $Fx < 0$ 00 ИПО C/Π В/О

7. Методом Монте-Карло. Ввод: $V_0={\rm PO},~a={\rm PA},~b={\rm PB},~\epsilon={\bf P}{\rm I\!\!\! L},~{\rm PC} \to x_n.$

Примечание. N и \overline{M} — номера шагов команд <u>ИПС</u> и $\overline{ИПB}$ соответственно при полном тексте программы.

Программа П П4/34. Численное интегрирование методом Симпсона. Ввод: $n={\rm PO},\ b={\rm PB}$ $a={\rm PA}$ (регистр С — суммирующий), данные подынтегральной функции.

ПП	40	ПС	ипв	1	ИΠЛ	ΠВ		Π 0	÷
ПА	ПП	40	1	ΠΠ	28	4	ПП	28	2
БП	14	ИПС	3	÷	ИПА	×	C/П	×	ИПС
+	ПС	FL0	36	БΠ	22	ипв	ИПА	+	ПВ
				•••					B/O

Контрольный пример: см в § 2.4. Подынгегральная функция вписывается в незаполненную часть программы при x = PB

Программа ПП5/34. Численное интегрирование по формуле Уэддля. Ввод: данные подынтегральной функции, $N=\mathrm{PX},\ b=\mathrm{PX},\ u\ a=\mathrm{PX}$ (регистры 0, A, B и C — служебные)

$\Pi 0$	0	ПС	C/П	†	C/Π	ПА		11П0	÷
6	÷	ПВ	Ш	26	FL0	13	ИПС	ИПВ	×
3	X	1	0	÷	C/П	ИПА	ΠΠ	59	1
						ПП			
51	1	ПΠ	51	5	ПП	5 l	ИПС	- -	ПС
B/O	X	ИПС				ИПВ			
									B/O

Контрольный пример: см в § 2.4. Подынтегральная функция вписывается в незаполненную часть программы при x = PA.

Программа ПП6/34. Численное интегрирование методом Гаусса с двумя ординатами. Ввод: данные подынтегральной функции N=PX, b=PX и a=PX (регистры 0, 1, 2, Λ , B, C и Π —служебные)

П0	3	F1/x	F/-	ПД	0	ПС	С/П	†	C/II
П		ИП0	÷	$\Pi 2$	ИПІ	†	$11\Pi_{2}$	+	П
XΥ	ПП	27	FL0	15	ИПС	C/Π	ПВ	-	2
-:-	ПА	ИПВ		ΠВ	ИПД	//	ПП	41	ИПВ
		ИПА		ПП	52	ИПВ	X	11ПС	-
ПС	B/O							†	B/O

Контрольный пример: см в § 2.4 Подыптегральная функция вписывается в незаполненную часть программы при x = PX, вносимом в ее начало

Программа ПП7/34. Численное интегрирование методом Гаусса при трех ординатах Ввод: данные подынтегральной функции, N=PX, b=PX и c=PX (регистры 0, 1, 2, A, B, C и \mathcal{I} — служебные).

Контрольный пример: см в § 2.4. Подынтегральная функция вписывается в незаполненную часть программы при $\kappa = \mathsf{PX}$ заносимом в ее начало

Программа ПП8/34. Решение дифференциального уравнения 1-го порядка методом Рунге— Кутта 4-го порядка. Ввод: h/2 = PA x (0) = PO данные производной, y (0) = PX (регистры G, A и 9 — служебные)

Контрольный пример: см. в § 2.5. Функция F(x, y) записывается в незяполненную часть программы, причем x = P0, y = PB

Программа ПП9/34. Расчет передаточной характеристики каскада с общим истоком на мощном МДП-транзисторе комбинированным методом секущих — хорд. Ввод: $\varepsilon^2 = \text{P0},\ U_{\text{Cl}} = \text{PB}$ (первое приближение) $E_{\text{Cl}} = \text{P1},\ U_{\text{Ol}} = \text{P2},\ R_{\text{Cl}} = \text{P3}$ $S = \text{P4},\ p = \text{P5},\ |b| = \text{P6},\ U_{\text{Cl}} = \text{PX}$ Результат: U_{Cl}

Контрольный пример: при указанных в § 4.2 данных $U_{\rm GI}=1$ В, $U_0=0$, $\varepsilon^2=1\cdot 10^{-6}$ и $U_3=10$ В получаем $U_{\rm G}=17,300578$ В за время около 1 мин.

Программа ПП10/34. Гармонический анализ функции y ,t), заданной $t_{\text{мано}}$ ненулевыми отсчетами Ввод $\Delta t = \text{PA}$ $t_{\text{мано}} = \text{PB}$, f = PX, $y_1 = \text{PX}$, ... $y_{\text{мано}} = \text{PX}$. Результ: S(f) (град)

† ИПО × × F sin П6	Fπ 1 П3 ИП2 ИПС Fx²	X + F sin + ÷ ИП5	ИПА П0 Х П2 П4 Fx ²	× С/П ИПІ ИПІ +	ПС ПД + ИПО × FV-	0 ИПО П1 — П5 П7	ПО ИПО ИПЗ Fx = 0 ИП2 ИПА	ПI X F cos 10 ИП4 X	П2 2 ИПД ИПС × П8
П6	Fx^2	ИП5	Fx^2	+	F/	Π7	ИПА	×	Π8
C/II	ИП5	ИП6	÷	Farctg	0	ΧY	_	Π8	1
8	0	X	Fπ	ئـــ	П9	C/II			

Контрольный пример: см. в § 5.1. Переключатель «Р—Г» в положении «Р». При наборе $y_1 \dots y_{\text{мако}}$ высвечивается номер отсчета, вводимого по ле обработки ранее введенного. Значения $\sin \pi f \Delta t / (\pi f \Delta t) = \text{P4}, \ NA_s/2 = \text{P5}$ и $NA_c/2 = \text{P6}$.

Программа ПП11/34. Расчет АЧХ и ФЧХ 4-полюсников по 11 отсчетам a_i переходной характеристики: Ввод: (после нажатия клавиши С/П) a_{10} = РҮ, a_{2} ... a_{0} = РХ, $f\Delta t$ = РХ. Результат: A (f), ϕ (f), A_{s} = РД, A_{c} = РС.

Контрольный при $v \in P$ см. в § 5.2. Переключатель «Р—Г» следует установить в положение «Р»

Программа ПП12-34. Расчет $k_{\rm P}$ методом пяти ординат Ввод. $t_1={\rm P9}$ $t_2={\rm PA}$ $t_3={\rm PB}$ $t_4={\rm PC}$ $t_4={\rm PA}$ Результат: $k_{\rm P}={\rm PX}$ $I_{\rm Cp}={\rm P0}$ $I_{m1}={\rm P1}$. $I_{m2}={\rm P2}$ $I_{m3}={\rm P3}$ $I_{m3}={\rm P1}$

Контрольный пример: см в. \$5.4

Программа ПП13 34. Расчет статистических параметров N случайных чисел Ввод N=P0=PA, 0=P1=P2=P3=P4=P5=P6, загем нажав клавищу С/П $x_1=PX$ $x_2=PX$ $x_N=PX$ Результат: \overline{x} , σ^2 , S и E (m_1 ... $m_4=P1$. P4 $M_2=PB$ $M_3=PC$, $M_4=PD$)

Hнструкция После ввода программы нажать клавиши F ABT и B/O Набрать $N=P0=P\Lambda$ и 0 в регистры P1 ...P6 Нажать клавишу С/П (высвечивается 0) Набрать x_1 ... x_N , нажимая в конце ввода каждого числа клавишу С/П

После ввода последнего числа x_N вычисляется \bar{x} , затем σ' (для получения несмещенного значения умножим вручную σ^2 на N (N-1) где N=PA) S в E. Значения m_1 . m_4 и M_2 ... M_4 хранятся в указанных выше регистрах

Контрольный пример: для десяти чисел (9; 8; 10; 9; 11; 12; 10; 10; 9 и 11) получим x = 9.9; $\sigma^2 = 1.29$; $S = 1.9656579 \cdot 10^{-1}$ и $E = -7.52539 \cdot 10^{-1}$

Программа ПП14/34. Линейная аппроксимация. Ввод: $N=\mathrm{PX}$ $x_1=\mathrm{PX}$, $y_1=\mathrm{PX}$, $x_2=\mathrm{PX}$, $y_2=\mathrm{PX}$, ..., $x_N=\mathrm{PX}$, $y_N=\mathrm{PX}$ Результат: β_1 и β_0 ($\beta_1=\mathrm{PA}$, $\beta_2=\mathrm{PB}$).

Контрольный пример см в § 9.5.

Программа ПП.5/34. Параболическая эппроксимация Ввод N=P7 далее см. в программе ПП14/34 Результат: — Δ

Порядок вычислений и контрольный пример см в ; 9.5

Программа ПП16/34. Степенная аппроксимация Вгод: см. в программе ПП14/34 Результат: β_0 и β_1 (β_0 = PA β_1 = PB)

Контрольный пример: см в § 9.5

Программа ПП17/34. Экспоненциальная аппроксимация Ввод: тм в программе ПП14/34. Результат: β_0 и β_1 ($\beta_0 = PA$ $\beta_1 = PB$)

Контрольный пример: см в \$95

Программа ПП18/34. Вычисление с точностью до $1.5 \cdot 10^{-7}$ функции вероятности ошибок [9]

$$\Phi(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\lambda^{2}} d\lambda = 1 - (a_{1} t + a_{2} t^{2} + \dots + a_{5} t^{5}) e^{-x^{2}},$$

где
$$t = 1/(a_6 \iota + 1)$$

Ввод: $a_1 = 2,5482959 \cdot 10^{-1} = P1$, $a_2 = -2,8449673 \cdot 10^{-1} = P2$, $a_3 = 1,4214137 = P3$ $a_4 = -1,453152 = P4$ $a_5 = 1,0614054 = P5$ $a_6 = 0,3275911 = P6$ $x = PX$.

Контрольный пример: Φ (0, 1) = 0,1124631; Φ (0,5) = 0,5205001; Φ (3) = 0 9999779 (время счета — около 20 с).

Программа ПП19/34. Вычисление с точностью до 1,5 · 10-7 функции [9]

$$\Pi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\lambda^{2}/2} d\lambda = 1 - 0.5 (1 + a_{1} x + a_{2} x^{2} + \dots + a_{6} x^{6})^{-16}.$$

Ввод: $a_1 = 49867347 \cdot 10^{-9} = P1$, $a_2 = 21141006 \cdot 10^{-9} = P2$, $a_3 = 3277626 \cdot 10^{-9} = P3$, $a_4 = 38004 \cdot 10^{-9} = P4$, $a_5 = 48891 \cdot 10^{-9} = P5$, $a_6 = 5883 \cdot 10^{-9} = P6$, x = PX.

ПД 6 ПО ИП6
$$\uparrow$$
 XY ИПД \times КИПО $+$ ИП0 $F_x = 0$ 05 XY 1 $+$ 1 6 $/-/$ XY $F_x = 0$ 1 $+$ С/П БП 00

Контрольный пример: Π (0) = 0,5, Π (0,1) = 0,5398275 Π (1) = 0.841346, Π (3) = 0,9986556 (время счета около 30 с).

Программа 20/34. Вычисление гамма-функции с точностью до 5 знаков по формуле Стирлинга

$$\Gamma (Z) = \sqrt{\frac{2\pi}{Z}} e^{-Z} Z^{Z} H (Z) ,$$
 где $H (Z) \simeq 1 + \frac{1}{12Z} + \frac{1}{288Z^{2}} - \frac{0.7}{288Z^{3}} .$

Ввод: Z = PX. Переключатель «Р—Г» в положение «Р».

Контрольный пример: Γ (0,5) = 1,7724781 (время счета 22 с); Γ (4,7) = 15.431423; Γ (-3,2) = 0,68905558

Программа ПП21/34. Вычисление функции Бесселя

$$I_n(x) = \frac{1}{n!} \left(\frac{x}{2} \right)^n \left[1 - \frac{(x/2)^2}{1! (n+1)} + \frac{(x/2)^4}{2! (n+1) (n+2)} + \cdots \right].$$

Ввод: n = P3, x = PX.

Контрольный пример: J_0 (0,5) = 0,93846981 (время счета — около 40 с), J_0 (4) = -3,9714976 · 10⁻¹ (время счета — около 80 с), J_{30} (20) = -1,2401602 · 10^{-4} (время счета — около 180 с).

Программа ПП22/34. Вычисление интегрального синуса при x < 10

Si
$$(x) = \int_{0}^{x} \frac{\sin t}{t} dt = x - \frac{x^3}{313} + \frac{x^5}{5!5} - \frac{x^7}{717} + \dots$$

Ввод: x = PX.

Контрольный пример: Si (0,1)=0.099944467 (время счета — около 30 с), Si (1)=0.94608314 (время счета — около 50 с), Si (3)=1.8486526 (время счета — около 70 с), Si (10)=1.6583514 (время счета — около 240 с).

Программа ПП23/34. Вычисление интегрального синуса при x > 8 **до** асимптотическому разложению

Si
$$(x) \simeq \frac{\pi}{2} - \frac{\cos x}{x} \left(1 - \frac{2}{x^2} \left(1 - \frac{12}{x^2} \left(1 - \frac{12}{x^2} \right) \right) \right) - \frac{\sin x}{x^2} \left(1 - \frac{6}{x^2} \left(1 - \frac{20}{x^2} \left(1 - \frac{20}{x^2} \right) \right) \right).$$

Ввод: x = PX (переключатель «Р—Г» в положении «Р»).

Контрольный пример: Si (10) = 1,6583685 (время счета — около 20 с), Si (20) = 1,5482415; Si (100) = 1,562254.

Программа ПП24/34. Вычисление интеграла Френеля

$$C(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} \frac{\cos t}{\sqrt{t}} dt = \sum_{n=0}^{\infty} (-1)^{n} \left(\frac{\pi}{2}\right)^{2n} \frac{x^{4n+1}}{(2n)! (4n+1)}.$$

Bвод: x = PX.

Контрольный пример: С (0,5)=0,49234422 (время счета — около 50 с), С (1)=0,77989341 (время счета — около 80 с), С (2)=0,48825333 (время счета — около 160 с).

Программа ПП25/34. Вычисление интеграла Френеля

$$S(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} \frac{\sin t}{\sqrt{t}} dt = \sum_{n=1}^{\infty} (-1)^{n} \left(\frac{\pi}{2}\right)^{2n+1} \frac{x^{4n+3}}{(2n+1)!(4n+3)}.$$

Ввод: x = PX.

Контрольный пример: S (0.5) = 0.064732433 (время счета около **50 с)**, S (1) = 0.43825912 (время счета — около 70 с), S (2) = 0.34341539 (время счета — около 165 с).

Программа ПП26/34. Вычисление интегралов Френеля С (x) и S (x) при $x\gg 1$ по асимптотическому ряду:

$$C(x) = \frac{1}{2} + \frac{\sin(\pi x^2 \cdot 2)}{\pi x} \left[1 - \frac{3}{(\pi x^2)^2} \right] - \frac{\cos(\pi x^2 \cdot 2)}{\pi^2 x^3} \left[1 - \frac{5}{(\pi x^2)^2} \right]$$

$$S(x) = \frac{1}{2} - \frac{\cos(\pi x^2 \cdot 2)}{\pi x} \left[1 - \frac{3}{(\pi x^2)^2} \right] - \frac{\sin(\pi x^2 \cdot 2)}{\pi^2 x^3} \left[1 - \frac{5}{(\pi x^2)^2} \right].$$

Ввод: x = PX. Результат: C(x) = PX, S(x) = PX.

Контрольный пример: C(2) = 0.48773584, S(2) = 0.34386864 C(10) = 0.49989868: S(10) = 0.46816998 (время счета 10-15 с)

Программа ПП27/34. Суммирование $m \le 6$ членов тригонометрического ряда Фурье (5.7). Ввод: $a_0 = \text{P0}, \ a_1 \dots a_6 = \text{P1} \dots \text{P6}, \ \phi_1 \dots \phi_6 = \text{P7} \dots \text{PC}, \ t/T = \text{PX}$

Контрольный пример: $a_0=0$, $a_1=1$, $a_2=0.1$, $a_3=0.05$, $a_4=0.02$, $a_5=0.01$, $a_6=0$, ϕ_1 ... $\phi_6=0$. Получаем f(0)=0, f(0.125)=0.83539108, f(0.25)=0.96 (время счета — около 30 с).

Таблица П2.1 Коды операций (команд) микрокалькулятора «Электроника Б3-34»

Операция	Код	Опера ция	Код	Операция	Код	Операция	Код
0	00	по	10	K <i>x</i> ≠00	70	КПП0	-0
•••						• • •	
9	09	П9	49	K <i>x≠</i> 09	79	КПП9	_9
•	0—	ПА	4	$\mathbf{K}x \neq 0\mathbf{A}$	7	КППА	
1-1	0 L	пв	4 L	$Kx \neq 0B$	7 ∟	КППВ	- [
ВП]0	ПС	4	$Kx \neq 0C$	7	КППС	
Cx	0 [пд	4 🛭	$Kx \neq 0 \perp$	7 [КППД	-r
↑	0 E	FBx	0	КВП0	80	КП0	L0
+	10	C/П	50				
	11	БП	51	ҚБП9	89	КП9	L9
×	12	B/O	52	ҚБПА	8-	ΚПА	L-
+	13	ПП	53	КБПВ	86	КПВ	LL
ХУ	14	кноп	54	ҚБПС	81	KNC	LI
F10*	15	$Fx \neq 0$	57	ҚБПД	8 г.	КПД	LT
Fe*	16	FL2	58	$Kx \ge 00$	90	КИПО	ГО
Flg	17	F <i>x</i> ≥0	59				
Fln	18	Fx = 0	5E	$Kx \ge 09$	99	ҚИП9	□ 9
Farcsin	19	Fx < 0	5	$Kx \ge 0A$	9-	КИПА	Г
Farceos	1-	FL0	5Г	$Kx \ge 0B$	9 L	КИПВ	FL
Farctg	1 L	FL1	5 L	$Kx \ge OG$	9[КИПС	Г
Fsin	1[FL3	5 <u> </u>	$Kx \ge 0 \pi$	9 [КИПД	ГГ
Fcos	iг	ИП0	60	Kx < 0	11	Kx = 00	E0
Ftg	iΕ						
Fπ	20	иП9	69	Kx<09	[9	Kx = 09	E9
Fγ	21	ИПА	6—	Kx < 0A	-	Kx = 0A	E—
F <i>x</i> ²	22	ипв	6 L	K <i>x</i> <0B	i L	Kx = 0B	ĒL
F1/x	23	ИПС	6[K <i>x</i> <0C		Kx = 0C	Ei .
Fxy	24	ипд	6 F	Кх<0Д	ĺΓ	Kx = 0D	ĒΓ

ПРИЛОЖЕНИЕ 3

ПАКЕТ ПРОГРАММ МИКРО-ЭВМ «ЭЛЕКТРОНИКА ДЗ-28»

Общая инструкция к пользованию прогриммами

1. Для ввода программы нажимаются клавиши С и В.

3 После ввода программы микро-ЭВМ переводится в режим автоматических вычислений пажатием клавиш Р и С.

^{2.} Программа вводится последовательным нажатием соответствующих клавиш пульта. Команды, вводимые кодами вида В1 А1 или В2 А2 и В1 А1 вводятся с помощью верхнего ряда клавиш прямого кодирования. Значения В1 и В2 набираются как сумма чисел на левых клавишах 10, 20, 40 и 80, причем нули игнорируются Цифры А1 и А2 набираются нажатием соответствующей клазиши правой группы клавиш: от 00 до 15.

- 4. Вводятся исходные данные (порядок ввода дан в кратких инструкциях к каждой программе). При вводе данных в регистр X после каждого ввода нажимается клавиша S.
 - 5. Программа запускается нажатием клавиши S.
- 6. В дополнение к пп. 1—5 следует руководствоваться инструкциями. приведенными в \S 1.5 и технической документацией к данной микро-ЭВМ

Программа ПП1/28. Численное интегрирование методом Симпсона ($N_{\rm B}=805$). Ввод: $a=9\Pi$ 0002, $b=9\Pi$ 0003, $N=9\Pi$ 0004 данные подыитегральной функции

М 3П	$\frac{2}{0003}$	0000	3П ВП	0005 0004	ΒΠ ÷	0003	† 3П	ВП 0002	0002
311	0003			0004	,	4	0002	₩ ₩	2
Ĩ	3	M	0001		J			1	
\triangleright	0001	M	0003	ВΠ	0005	Î	3	÷ .	ВП
0002	×	CK	0515	M	0002	×	ВΠ	0005	+
↓	3П	0005	ВП	0004	†	1		↓	3П
0004	0412	0711	\triangleright	0003	ВΠ	0003	†	ВП	0002
	1	3П	0003	M	0000	ВΠ	0003	x^2	x^2
†	ĖΠ	0006		1	ЗП	0007	ВΠ	0003	x^2
†	ВΠ	0003	×	ВΠ	0007	÷	↓	0511	051 2

Инструкция. Вычисление подынтегральной функции оформляется подпрограммой, помеченной меткой М 0000 при x, берущемся из ЯП 0003. Результат должен заноситься в регистр X. В программу вписана подынтегральная функция контрольного примера — интеграл

$$I = \int_{0}^{b} \frac{x^3}{x^4 + c} \ dx$$

при $c=9\Pi$ 0006. При a=1, b=5, n=16 и c=16, нажав клавишу S получим I=0.907458959150

Программа ПП2/28. Численное интегрирование методом Гаусса при N=3 ($N_{\rm H}=1080$) Ввод: данные подынтегральной функции. $N={\rm PX}$ и $a={\rm PX}$

M	0016	ЗП	0000		6	$1/\bar{x}$	зΠ	0001	0
3П	0002	ČK	0515	ЗП	0003	f	CK	0515	3П
0004		ВП	0000	÷	Ţ	ЗΠ	0005	M	0000
ВΠ	0004	ЗП	0006	†	ЪΠ	0005	+	↓	311
0004	ВΠ	0006	+	Ż	÷	1	ЗΠ	0007	ВΠ
0004	†	ВΠ	0006	_	2	÷	↓	3П	0008
ЗН	†	ВΠ	0001	×	ВΠ	0007	<u>`</u> +	1	0001
5	0002	ВΠ	0007	0001	8	0002	ВΠ	0008	↑
ВΠ	0001	X	ВΠ	0007	+	↓	0001	5	0002
1	П—	0000	ВΠ	0000	0412	0 611	\triangleright	0000	ВΠ
0002	†	ВΠ	0008	×	СK	0515	M	0002	×
9	÷	↓	$\Pi+$	0002	0511	M	0001	†	2
X	1	4	1	$1/\bar{x}$	ķ	0511	0512	•	

Инструкция. Вычисление подынтегральной функции оформляется подпрограммой, помеченной меткой М 0001 при х, берущемся из регистра X, результат должен заноситься в регистр Y. В программу вписана подынтегральная функция контрольного примера — интеграл

$$I = \int_{0}^{1} \sqrt{2x+1} \ dx.$$

При N=10 получаем I=1,39871747423 за время около 2 с.

Программа ПП3/28. Решение дифференциального уравнения 1-го порятка методом Рунге—Кутта 4-го порядка ($N_{\Pi}=734$) Ввод: h/2= ЯП 0002. x (0) = ЯП 0003, данные y'(x,y) y (0) = РХ

Инструкция Вычисление производной y'(x,y) оформляется подпрограммой, помеченной меткой М 0002 при x, берущемся из ЯП 0003 и y — из ЯП 0007. Результат вычислення производной должен раноситься в регистр Y В программу вписана y'(x,y) контрольного примера — дифференциальное уравнение duldt = (E-u)/(RC) при u=y, t=x, E= ЯП 0008 RC= ЯП 0009 Результаты решения приведены в \S 2.5.

Программа ПП4/28. Расчет распределения токов стока параллельно включенных мощных МДП-транзисторов ($N_{\rm H}=2799$)

M CK 0000	0013 0515 +	† 3Π ↓	4 1515 3∏	× 0 0000	↓ 3П СК	3П 0000 0515	1501 1 0504	0 ↑ ΒΠ	† B11 0501
0507	1402	0015	0	Ţ	CK	0515	3П	1502	CK
0515	311	1503	M	0	CK	0515	3П	1504	0
317	1510	1	0	3П	1511	M	l 1513	0	311
0000	3П	0514	1	2	0	3П	1513	BIJ	1510
1	ВΠ	1511	+	1400	3П	1510	0000	ВΠ	0000
1	ВП	1501	0507	1402	8000	ВП	1503	1	ВП
1510		ВП	1502	÷	ВП	1514		0412	0510
\triangleright	1_	ВΠ	1510	Ť,	ВП	1511		Ł	311
1510	вп	1511	↑	.1	0	÷ Þ	ų.	311	1511
↑	ВΠ	1515		0412	0510		1	ВΠ	1510
†	\triangleright	0	M	0000	ВП	0000	†	1	+
0505	3П	1505	1	+	0505	3П	1506	l	+
0505	3П	1507	1	+	0505	ЗП	1508	↓	3П
0000	ВΠ	1504	x^2	†	ВΠ	1507	X	ВΠ	1506
+	ВΠ	1504		0412	0410	1403	0004	0	1403
0109	Ī	3[]	1509	ВΠ	1508	†	ВΠ	1510	×
ВП	1509	÷	1	e^{x}	†	ĺ		ВΠ	150 9
×	ВΠ	1505	×	↓	3П	1512	ВΠ	1513	1
1	+	↓ .	ЗП	(513	ВΠ	1512	0504	†	ВΠ
1514	+	į	3П	1514	0511	0512		•	

Инструкция и контрольный пример приведены в § 4.5.

Программа ПП5/28. Расчет статического режима схемы с общим истоком на мощном МДП-гранзисторе ($N_{\rm n}=1904$).

M	0014	0	3П	0000	1	†	ВΠ	0000	+
1	3П	0000	CK	0515	0504	ĺ	1	0507	0402
0015	0	CK	M	0	0515	ЗП	0012	0	3П
0110	ČK	M	1	0	3П	0014	· 1	0	ЗΠ
0108	ВΠ	0110	†	ВΠ	0013	×	ВΠ	0010	×
ВП	0009	+	į	3П	0015	2	0	_	ВΠ
0005	X	1	<u>'</u>	ВΠ	0001	×	1	3П	0106
ВП	0015	†	2	0		ВΠ	0006	×	1
+	вП	0002	×	1	3[]	0107	M	2	BII
0014	†	ВП	0108	+	†	ЗП	0014	ВΠ	0012

χ^2	†	ВΠ	0003	×	вп	0012	+	ВΠ	0107
	↓ ·	ЗП	0109	вп	0004	3Н	†	ВП	0014
×	ĠΠ	0109	÷	↓	e x	3H	Ť	1	+
ВΠ	0109	×	ВΠ	010 6	X	↓	3П	0013	ВП
0007	†	ВΠ	0014	_	ВΠ	8000	÷	ВП	001 3
_	0412	0510	\triangleright	2	ВΠ	0014	†	ВΠ	0108
_	↓	ЗΠ	0014	ВΠ	0108	†	ì	0	÷
↓	3П	0108	ВΠ	0011	0508	\triangleright	2	BΠ	0014
Ť	ВΠ	0010	05 09	1403	0007	ВΠ	0013	†	вп
0014	0515	↓	317	0110	\triangleright	1	0512		

Инструкция и контрольный пример даны в § 4.5

Программа ПП6/28. Расчет спектральной плотности непериодических сивналов ($N_{\rm II}=1981$) Ввод: t_0 N, Y_1 , ..., Y_N и f.

M ↓	0011 ЗП	3П 1503	1501 0	↑ 3Π	CK 0000	051 5 1	3Π †	150 2 ВП	÷ 0000
+	Ţ	зп	0000	CK	0515	0504	ВΠ	1502	0507
1402	0015	M	0	0515	Ť	π	×	ВΠ	1503
×	↓	3П	1504	0412	0711	1403	0009	0802	†
ВΠ	1504	÷	1	1403	0001	1	ЗΠ	1505	Ó
3П	1 50 6	3F1	1507	3П	1508	ЗП	1509	3П	1510
ЗП	0000	1	†	вп	0000	+	↓	3П	0000
0505	0000	ВΠ	0000	†	ВΠ	1502	0507	1402	0101
0515	ВΠ	1506	†	ВΠ	1507	÷	↓	0807	3Н
ЗП	1508	вп	1507	x^2	3П	1513	ВΠ	1506	χ^2
†	ВП	1513	+	↓	\sqrt{x}	†	ВΠ	1505	×
ВΠ	1503	X	ВП	1508	Ď	Ò	M	0000	ЗΠ
1509	ВΠ	0000	1	2	×	ВΠ	1504	X	1
3П	15 10	0802	†	ВΠ	1509	X	ВΠ	1506	+
↓	3П	1506	ВП	1510	0803	†	ВΠ	1509	×
ВΠ	1507	+	1	3П	1507	0511	0512		

Инструкция. При вводе $Y_1 \dots Y_n$ номер очередного вводимого отсчета высмечивается на индикаторе регистра Y. После ввода f получаем S (f) и ϕ (f) в радианах. При смене f вводится только новое значение f и нажимается клавиша S.

Программа ПП7/28. В: числение усеченного ($m\leqslant 75$) тригонометрического ряда Фурье ($N_{\Pi}=1256$). Ввод: m , f_1 A_1 , ϕ_1 A_2 , ϕ_2 , ..., A_m ϕ_m , y_0 , t. Результат: y (t)

```
M
       0009
                                         3П
                                                1502
                                                       CK
                                                             0515
                            X
3П
                                  1503
              ×
                                                ЗΠ
                                                       0000
       π
                                         0
       ВΠ
                                   ЗΠ
              0000
                                         0000
                                                       ВΠ
                                                              1502
                                                0504
       0507
              1403
                    0007
                                  CK
                                         05!5
                                                       1402
                                                              0104
ĊK
              3П
                                                ЗΠ
                                                       1504
                                                              ВΠ
      0518
                    1508
                                  CK
                                         0515
                            ЗΠ
1508
       3П
              1507
                                  0000
                                         0000
                                                ВΠ
                                                       0000
                     0
ВΠ
       1502
             0508
                     1403
                           0003
                                  1402
                                         0010
                                                ВΠ
                                                       1507
                                                              1402
0109
       M
              0000
                     ВΠ
                           0000
                                                       0505
                                                              ЗΠ.
                                   1506
                                                ЗΠ
1505
              +
                     0505
                            3П
       1
                                                       0000
ВΠ
       1503
              ×
                                         BΠ
                     ВΠ
                           1504
                                  X
                                                1506
                                                              šп
0802
              ВΠ
                    1505
                           Х
                                  ВΠ
                                         1507
1507
      0511
             0512
```

Инструкция При смене t вводится новое значение t и нажимается клавища S.

Программа ПП8/28. Расчет частотной и фазочастотной характеристик делей по заданной переходной характеристике ($N_{\rm L}=2034$). Ввод: $N_{\rm L}$, $t_{\rm U}$, a_1+a_N , $f_{\rm L}$ Резульгат: S(f) и $\phi(f)$ в радианах.

1
, m n 4
0504
π
ВΠ
1505
2
0000
1507
ВΠ
1512
\triangleright
↓
ВΠ
X
†
ВΠ

Инструкция При вводе в индикаторе регистра Y высвечивается номер очередного вводимого отсчета. После ввода каждого параметра нажимается клавиша S. При смене f повторяется ввод только f.

Контрольный пример: см в § 5.2

Программа ПП9/28. Расчет переходного процесса ключа на мощном МДП-гранзисторе ($N_{\rm II}=3573$) Ввод: $\Delta t - N$ в порядке, указанном в распределении регистров затем $U_{\rm C}$ (0) в i_4 (0)

```
0000
                                    0515
                                            3П
                                                   0001
                                                          0515
                                                                 ЗΠ
              0
                      ЗΠ
М
       0004
                                    зп
                                                   0515
                                                          3П
                             0515
                                            0004
                                                                 0005
              3П
                      0003
       0515
0002
                                                   3П
                                           0515
                             3П
                                    0007
                                                          8000
                                                                 0515
0515
       зΠ
              0006
                     0515
                             0010
                                    0515
                                           ЗΠ
                                                  0011
                                                         0515
                                                                 ЗП
ЗΠ.
       0009
              0515
                      ЗΠ
                                           0014
                                                          3П
                                    ЗП
                                                  0515
                                                                 0015
       0515
              3П
                     0013
                             0515
0012
                                           M
                             ЗΠ
                                    0107
                                                  0000
                                                         0
                                                                 ЗΠ
                     0515
0515
       3П
              0106
                                                  ЗП
                                                         0203
                                    3П
                                           0202
                                                                0515
       ЗΠ
              0000
                      ЗΠ
                            0201
0209
                            0200
                                    0515
                                           3П
                                                  0204
                                                         M
                                                                0001
                      3П
              0515
ЗΠ
       0109
                                                  3П
                                                         0000
                                    +
                                                                0002
                             0001
                      вΠ
ВΠ
       0000
                                            ВΠ
                                                  0012
                             0109
                                                          ÷
ВΠ
       0108
                      ВΠ
                                                         X
                                                                ĖΠ
              ВΠ
                             \chi^2
                                           ВΠ
                                                  0106
       0201
                     0109
ЗΠ
                                    ЪΠ
                                           0109
                                                   +
                                                                 ЗΠ
                      3H
0006
        +
                                                          BΠ
                                                                 0200
              o610
                                    ВΠ
                                           0015
0206
       0412
                      \triangleright
                                           еx
                                                  ЗH
                                    3H
                                                         ٨
                                                                 1
       ВΠ
              0206
                      ÷
X
                                                                2
                             BΠ
                                    0014
                                           X
                                                          \triangleright
+
       ВΠ
              0206
                      X
                     M
                                    ЗΠ
                                           0205
                                                                ВΠ
                             2
M
       i
              0
                                                   ВΠ
                                                          8000
                                            ٢
                      311
                             0207
0007
                                                                0009
                                    0207
       0207
                             ЗΠ
                                                          ВП
ВΠ
                                    ЗΠ
                                           0207
                                                   BΠ
                                                          0201
              0207
                      +
       ВΠ
                             šп
                                                  0204
                                                                 ВΠ
                                           ВΠ
ВΠ
                                    0208
       0007
              ÷
                                           0009
                                                          ВΠ
                                                                 0208
              ВΠ
                      0203
                                    ВΠ
                                                   ÷
0205
                            +
                                                   ВΠ
                                    3П
                                           0202
                                                          0009
       ВΠ
              0207
                     ÷
+
                                    3П
                                           0207
                                                   ВΠ
                                                          0204
ВΠ
       0010
              ÷
                            0202
                                                  0207
                                           ВΠ
                     ВΠ
                                                         ÷
ВП
       0205
                                    ВΠ
                                           0202
                                                         ВΠ
                                                                 0001
3П
              ВΠ
                     0201
       0203
                             ВΠ
                                    0109
                                           +
                                                         3П
                                                                0109
              0007
×
       ВΠ
                                           ВΠ
                                                  0010
                     ВΠ
                                                                ВΠ
ВΠ
                            0001
                                    ×
                                                          ÷
       0203
                                                         ВΠ
                                    ВΠ
                                           0204
                                                                 0013
                     ЗΠ
                            0200
0200
       +
                                                  ĖΠ
                                                         0005
                                                                 +
              0200
                      +
                                    3H
       ВΠ
×
                                           ВΠ
                            0011
                                                  0204
                     ВΠ
                                    ÷
ВΠ
              ×
       0001
                                                         ЗП
                                                                0209
              ВΠ
                                           +
                     0209
3П
       0204
                            0412
                                                  0001
                                                         0
                                                                 3П
              0107
                                    0411
       ВΠ
                                           \triangleright
                                           0515
                                                          0200
              0108
                     t
                            ВΠ
                                    0000
                                                  ВΠ
0209
       ВΠ
                            0001
                                   M
                                           0002
                                                  t
                                                          ВΠ
                                                                 0003
ВΠ
       0204
              0515
                     Ď
```

Инструкция После набора каждого параметра нажимается к лавиша 8. Поокончании ввода программа переходит к выдаче на каждом интервале $N\Delta t$ вначений t и $U_{\rm RX}$ (t) в затем $U_{\rm G}$ (t) и t (t) при каждом нажатии клавиши S Конгрольный пример см. в § 7.6.

Таблица П8.1

аспределение ли в программе 11119/20													
пр	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	0010	0011	0012
Величниа	t	Δt	τ_{Bx}	t ₁₇	U_m	E _C	Uo	C ₁₁	C ₁ ,	C22	Сп	L	R _p
ЯП	v013	0014	0015	0106	0107	0108	0109	0200	0201	0202	0203	0204	02 05
Вети или	R.	۶	р	ь	٧	$u_{\scriptscriptstyle \mathrm{BX}}$	<i>u</i> ₃	$u_{\rm c}$	t ₁	ι_2	<i>t</i> ₃	٠ 14	I _C

Прыграмма ПП10/28. Расчет статистических параметров и подготовка дан ных для построения гистограмм ($N_0=5225$) Ввод: число чисел $x_n \to N$, претделы x_1 . x_{20} для построения гистограмм, массив x_n

M 0401 1402 0601 ΒΠ	0015 ВП 0013 ЗП 0401	3П 0401 M 0602	0403 ↑ 0 3П 0	2 CK 0 0603 0504	0 0515 ЗП ЗП 2	3П 0504 0401 0604 0	0401 4 ЗП 1 1507	1 0 0402 11+ 1402	П+ 0507 3П 0401 0012
M	1	1	$\Pi+$	0402	ВП	0403	1_	ВΠ	0402
0507	Þ,	2	1↓	ĊK	0515	↓	3П	0404	$\Pi +$
0601	x2	$\Pi +$	0602	Î	ВП	0404	\times_{-}	Į.	$\Pi +$
060_{3}	ВП	0404	×	↓	$\Pi+$	0604	ВΠ	0404	Ť
ВП	0201	0508	1403	0006	1	$\Pi +$	0001	\triangleright	ł
ВΠ	0202	0508	1403	0006	1	Π+-	0002	\triangleright	l
ВΠ	0203	0508	1403	0006	1	$\Pi +$	0003	\triangleright	1
ВΠ	0204	0508	1403	0006	1	$\Pi +$	0004	\triangleright	1
ВΠ	0205	0508	1403	0006	1	$\Pi+$	0005	\triangleright	į.
ВП	0206	0508	1403	0006	1	$\Pi+$	0006	Þ	į
ВΠ	0207	0508	1403	0006	1	$\Pi +$	0007	\triangleright	l
ВΠ	0208	0508	1403	0006	1	$\Pi+$	8000	⊳	Ł
ВΠ	0209	0508	1403	0006	1	$\Pi +$	0009	Ď	<u>L</u>
ВΠ	0300	0508	1403	0006	1	$\Pi+$	0010	\triangleright	Ł
ВΠ	0301	0508	1403	0006	1	$\Pi +$	0101	\triangleright	1
ВП	0302	0508	1403	0006	1	$\Pi +$	0102	\triangleright	Į
ВΠ	0303	0508	1403	0006	1	$\Pi +$	0103	\triangleright	Ł
ВП	0304	0508	1403	0006	1	$\Pi+$	0104	\triangleright	į
ВП	0305	0508	1403	0006	1	$\Pi +$	0105	\triangleright	Į
ВΠ	0306	0508	1403	0006	1	$\Pi +$	0106	\triangleright	i
ВΠ	0307	0508	1403	0006	1	$\Pi+$	0107	\triangleright	l
ВΠ	0308	0508	1403	0006	1	$\Pi +$	0108	\triangleright	L
ВΠ	030 9	0508	1403	0006	I	$\Pi +$	0109	\triangleright	Ł
ВΠ	0400	0508	1403	0006	1	$\Pi \vdash$	0200	\triangleright	Į

M 0701 B∏ 0403 − ↓ 3∏ ↓ 0707 B∏ 0403 B∏ × 0903 − † + +	2 x³ 0701 ÷ 3Π 0802 3Π BΠ 0703 BΠ † 0709 † 0403 0701 ↓ BΠ ↓	B∏ 3∏ 3∏ 0704 B∏ 0801 0703 × 0702 3 + 1 × ↑ √x 0802 3∏ 3∏ 3∏ 3∏ 3∏ 3∏	0601 0705 ↓ 3Π 0705 ΒΠ 0701 ΒΠ + 4 × ΒΠ ΒΠ ΒΠ 1/x x² 090 ↓ 0407 0409 0411	↑ x² 3 Π 0702 B Π 0702 ↑ 0706 ↓ × 6 B Π 0704 ↓ 0805 0902 ↑ 1/x B Π 3 Π 1 2 6	BΠ 3Π 0706 BΠ 0604 † 3Π ↓ × 0708 + 3Π † 0515 BΠ † 0903 0405 — †	0403 0707 B∏ 0603 † B∏ 0702 2 0803 3∏ † + 0805 ↓ B∏ 0803 B∏ 0803 B∏	÷ BΠ 0602 † BΠ 0705 × 8Π 0708 3Π 9802 × 0802 × 0804 0515 3Π 3Π 3Π 3Π 3Π 3Π 0405	↓ 0705 ↑ BΠ 0403 — 3 ВП 0709 ЗН 0802 ЗП ↑ ↓ × ВП 0406 0408 0410 ×	3∏ † B∏ 0403 ÷ × 0801 † 0705 B∏ † 0705 B∏ † 3 0403 1 4 2 B∏
	ļ	311		1	_	<i>x</i> ↓	ЗП	0408	4
	Ĭ				†	ĎΠ			
0409	÷	ВП	0410	÷	V	\sqrt{x}	3П	0412	2
4 ×	∱ BΠ	ΒΠ 0406	0403 ÷	× ВП	ВП 0410	0407 ÷	Х ВП	ВП 0411	0408
Į.	\sqrt{x}	†	вП	0412	4	- 0515	0512	0411	÷

Инструкция После ввода чассива $x_1 = x_N$ получаем $\overline{x} = PY$ в $\sigma = PX$. Нажав клавишу S, получаем S = PY и E = PX Еще раз нажав клавишу S, получаем $\alpha_s = \text{РУ } \text{и } \alpha_{\text{E}} = \text{РХ}$ Моменты $m_1 \dots m_4$ заносятся в ЯП 0701 $\dots 0704$ моменты M_2 ... M_4 — в ЯП 0802 ... 0804, данные для гистограммы (число попаданий чисел в заданный промежуток) заносятся в ЯП 0001 ...0200, пределы вон гистограмм заносятся в ЯП 0201 ...0400.

Контрольный пример: см. в § 9.3

СПИСОК ЛИТЕРАТУРЫ

- 1. Гильде В., Альтрихер З. С микрокалькулятором в руках: Пер. с нем Ю А. Данилова. — М. Мир, 1980 — 222 с
- 2. Трохименко Я. К., Любич Ф. Д. Инженерные расчеты на микрокалькуляторах — Киев Техника 1980. — 381 с
- 3. Трохименко Я К., Любич Ф. Д. Радиотехнические расчеты на микрокалькуляторах: Справочное пособие — М.: Радио и связь 1983. — 256 с.
- 4 Иванов В И., Иванов Е. А., Муренко Л. Л., Филимонов А Н. Вычислительные и управляющие микросистемы индивидуального пользования. -Электронная промышленность, 1979, № 11, с 22.
- 5 Прокофьев В. А. Программирование для мини ЭВМ. М.: Сов 1979. — 80 c.
- Корн Г., Корн Т. Справочник по математике для научных работников и инженеров Пер с англ /Под ред И Г Арамаговича — М.: Наука 1973. —
- Яремчук Ф П., Дудченко П. А. Алгебра и элементарные функции Киев: Наукова думка, 1976 — 688 с. Ильин В Н. Основы автоматизации схемотехнического проектированая. —
- M. Энергия 1979 383 c
- 9. Лившиц В М., Лигвин В Ф. Приближенные вычисления и программирование на ЭВМ «Наири-2». — Л.: Машиностроение 1977, — 240 с.

10. Горинштейн А. М. Численное решение задач радиотехники и техники связи на ЭЦВМ. — М.: Связь 1972. — 20) с.

11. Герсковен Д. Д. Машинный расчет интегральных схем. Пер. с англ./ Под ред. К. А Валиева Г. Г Казеннова, А. П Голубева. — М.: Мир 1971. — 408 с.

Бахвалов Н С. Численные методы. — М.: Наука, 1975. — 631 с.

13. Демидович Б. П., Марон И А Основы вычислительной математики. — М.: Наука 1980 - 664 с

14 Дьяконов В П О рациональном численном методе расчета нелинейных схем с помощью программируемых микрокалькуляторов. — Изв вузов СССР. Приборостроение, 1982, № 1, с. 42.

15. Шуп Т. Решение инженерных задач на ЭВМ Пер с англ./ Под ред. В В

Миносцева. — М.: Мир, 1982. — 281 с.

Анго А Математика для электро- и радиоинженеров: Пер с франц /Пов ред K С Шифрина. — М. Наука, 1964. — 772 с.

Носов Ю Р., Петросянц К. О., Шилин В. А. Математические модели элементов интегральной электроники. — М.: Сов. радио, 1976. — 304 с.

18. Калахан Д. Методы машинного расчета электроиных схем. Пер. с англ./ Под ред. С И Сирвидаса. — М.: Мир, 1971. — 344 с.

19. Чахмахсазян Е. А., Бармаков Ю. Н., Гольденберг А. Э. Машинный анализ интегральных схем: Вопросы теории и программирования. — М.: Сов. радио, 1974. — 272 с.

20. Сигорский В. П., Петренко А. И. Алгоритмы анализа электронных схем.

— М.: Сов радио, 1976. — 608 с.

21. Степаненко И. П. Основы теорни транзисторов и транзисторных схем. — М.: Энергия, 1977. — 671 с.

22. Моругин Л. А. Импульсные схемы на туннельных диодах. — М.: Сов. радио, 1966. — 272 с.

23. Сидоров А. С. Теория и проектирование нелинейных импульсных схем на

тунпельных диодах. — М.: Сов. радво, 1971. — 264 с. 24. Бачурин В. В., Дьяконов В. П., Сопов О. В. Мощные высокочастотные и сверхвысокочастотные МДП-транзисторы. — Электронная промышленность. 1979, № 5 с 5.

25. Сопов О. В., Бачурин В. В., Дьяконов В. П., Зиенко С. И., Смердог В. Ю. Мощные ВЧ и СВЧ МДП-транзисторы — импульсные приборы наносекундного диапазона. — Электронная техника. Сер. 2. Полупроводниковые приборы, 1978, № 5, 6, с. 103.

26. Дьяконов В. П. Лавинные транзисторы и их применение в импульсных уст-

ройствах — М.. Сов. радио, 1973 — 208 с.

27. Дьяконов В. П. Предельные возможности лавинных транзі сторов в импульсных цепях. — Радиотехника, 1976, № 7, с. 82.

Дьяконов В П., Самойлова Т. А. Математическая модель биполярного транзистора для обычного и лавинного режимов работы. — Радиотехника 1979 № 10. c 13.

29. Гаряинов С. А., Абезгауз И. Д. Полупрово (никовые приборы с отрицатель: ным сопротивлением. - М.: Энергия, 1970. - 320 с.

30. Виноградов Ю В. Основы электронной и полупроводниковой техники. — М. Энергия l €68. — 624 c.

Козинцева Л. П. Усилители **н**а полупроводниковых приборах — М.: Выс-шая школи 1965 — 136 с

Транзисторы для аппаратуры широкого применения: Справочник/ К. М. Брежнева Е И. Гайтман Т. И Давыдова и др.; Под ред Т. Л. Перельма на. — М.: Радио и связь 1981. — 656 с.

33. Қалихман С. Г., Левин Я. М. Радиоприемники на полупроводи ковых при борах: Теория и расчет. — М.: Связь, 1979. — 352 с.

34. Вилконс. Программный анализ частотного спектря осциллограмм — Элек-

троника 1977 № 3 с. 62 35. Бессонов Л. А. Теоретические основы электротехники. — М. Высшая школа 1964 — 752 с

36. Горяннов В. Т., Журавлев А. Г., Тихонов В. И Статистическая радиотехника. Примеры и задачи. — М.: Сов. радио, 1980. — 544 с.

- 37. Зернов Н. В., Карпов В. Г. Теория радистехнических цепей Л.: Энер гия. 1972. - 812 с.
- 38. Гоноровский И С. Радиотехнические цепи и сигналы. М., Сов радио, 1977. — 608 c.
- 89. Источинки электропитания на полупроводниковых приборах: Проектиро вание и расчет/ С. Д. Додик, Ю. Я Дусавицкий К. Б. Мазель и др.; Пол ред. С. Д. Додика, Е. И. Гальперина — М. Сов. радио, 1969 — 448 с.
- 40. Мейнке Х., Гундлах Ф. Радиотехнический справочник В 2-х т: Пер. с ием. Т. 1. — М.: Госэнергоиздат, 1961. — 416 с.
- 41. Хейес. Программа для расчета несимметричных и симметричных полосковых линий на микрокалькуляторе НР67. — Электроника 1978 № 2 с. 58.
- 42. Ицхоки Я. С., Овчинников Н И. Импульсные цифровые устройства. М.: Сов. радио 1972. — 592 с.
- 48. Самойлов Л. К. Устройства задержки информации в дискретной технтике. **М**.. Сов. радио 1973 — 256 с.
- 44. Питерс. Программа расчета параметров линий передач на калькуляторе. -Электроника 1978 № 3 с. 62.
- 45. Хейес. Программа расчета резонансных схем на калькуляторе. Электроника 1977, № 24. с. 44
- 46. **Хейес.** Программа расчета взаимно расстроенных резонансьых цепей на калькуляторе Электроника, 1977 № 25, с 39.
- 47. Мартин. Расчет фильтров при помощи программиру мого калькулятора. Электроника, 1976, № 24, с. 64.
- 48. Бойд Программа для вычисления передаточных функций цепей на калькуляторе. — Электро**а́я**ка 1977 № 6, с. 64.
- 49. Ли. Решение дифференциальных уравнений второго порядка на калькуляторе SR-52 Электроника 1977 № 20, с 62.
- 50. Роув, Смит. Калькуляторная программа для оптимизации коэффициента шума системы. — Электроника, 1977 № 14 с. 58
- Брайант. Программа перерасчета децибел для калькулятсра SR-56. → Электроника 1977 № 7 с. 63
- Албанс Программа Z-преобразования для получения характеристик дискретных систем — Электроника 1978, № 10, с 63.
- 53. Шульц. Расчет укороченных вертикальных антеня при помощи калькулятора НР-25/НР-33Е — Электроника, 1979, № 3 с 61.
- 54. Дьяконов В. П., Самойлова Т. А. Расчет и моделирование на ЭВМ каскада с общим истоком на мощном МДП-транзисторе. - Изв вузов СССР. Радиоэлектроника. 1980, № 6. с. 97
- Лурье 0 Б Усилнтели видеочастоты М. Сов радио 1961. 678 с. 55
- Фиш Программа ычисления интеграла свертки для калькулятора Т1-59. 56 — Электроняка, 1978 № 26 c. 57.
- Харкевич А А Основы радиотехники. М., Связьиздат, 1962 560 с. 57
- Агахаиян Т. М., Гаврилов Л. Е., Мищенко Б. Г. Основы наносекундной импульсной техники — М. Атомиздат, 1976. — 376 с.
- Недолужко И. Г., Сергиенко Е. Ф Однопереходные транзи торы. 1... Энергия, 1974**. — 104**°с.
- Ерофеева И. А. Импульсные устройства на однопереходных гранзисторах. -60 M Связь, 1974. — 72 с.
- Дьяконов В. П. Анализ переходных процессов емкостного релаксатора на 61 лавинном гранзисторе с учетом основных закторог его инерционности. -Радиотехника и электроника 1979, № 6, с. 1103.
- 62. Дьяконов В. П. Импульсные устройства на питегральных микросхемах. — МЭИ, 1977. — **84** с.
- 63. Дьяконов В. П., Лыков П. Г. Стабильный мостовой мультивибратор на интегральном операционном усилителе. - Изв. вузов СССР. Приборостроеиие, 1979, № 4, с. 67.
- 64. Типонут, Стойциу. Импульсный геператор в виешиим включением на одной ИС. — Электроника, 1978, № 25, с. 68.
- 65 Дьяконов В. П. Ждущие мультивибраторы на интегральных схемах. При боры и гехника эксперимента, 1976 № 3, с. 158.
- 66. A. c. СССР № 539367. БИ. 1976. № 46, c. 163.

67. Дья конов В. П., Лыков П. Г. Высокостабильны, мультивибр торы на ингегральных микросхечах ТТЛ. - Приборы и техника эк перимента, 1979, № 4, c. 141.

Шило В Л. Линейные интегральные схемы. — М.: Сов. радио 1979 →

36ა c.

69. Дьяконов В. П. Интегральные таймеры и их применение в импульсных устройствах. — Зарубежная радиоэлектроника, 1978, № 6, с. 48. 70. Алексенко А. Г. Основы микросхемотехники: Элементы морфологии микро-

электронной аппаратуры. — М.: Сов. радио, 1977. — 405 с. 71. Проектирование радноэлектронных устройств на интегральных микросхемах/ П. Ю. Астанин, В. И. Белицкий, В. В. Краский и др.: Под ред. С. Я.

Шаца. — М.: Сов. радио, 1976. — 312 с. 72. Куценко А. В., Полосьянц Б А., Широченков В. А. Импульсные устройства на монолитных интегральных схемах. — Приборы и техника эксперимента, 1973, № 4, с. 7.

73. Трохименко Я. К., Каширский И. С., Ловкий В. К. Проектирование радиотехнических схем на инженерных ЭЦВМ. — Киев: Техника, 1976. — 272 с.

Чуа Л. О., Пен-Мин-Лин. Машинный анализ электронных схем.: Пер. с англ./ Под ред. В. Н. Ильина. — М.: Энергия, 1980. — 640 с. 75. Анисимов В. В., Белов Б. И., Норенков И. П. Машинный расчет элемен-

тов ЭВМ. — М.: Высшая школа, 1976. — 336 с.

76. Широков А. М. Надежность радиоэлектронных устройств. - М.: Высшая школа, 1972. — 272 с.

Мартии Ф. Моделирование на вычислительных машинах. — М.: Сов. радио, 1972. — 288 c.

78 Соучек В. Мини-ЭВМ в системах обработки информации: Пер. с англ./ Под ред. Е. В. Дробова. — М.: Мир, 1976. — 520 с.

79. Сигорский В. П. Математический аппарат инженера. — Киев: Техника, 1975. - 68 c

80. Справочі и, по нелинейным схемам: Пер. с англ./ Под ред. Д. Шейнголда. -М.: Мир 1977. — 524 с.

ОГЛАВЛЕНИЕ

Іредисловие
лава 1. Технические данные и программирование микрокалькуля- торов и микро-ЭВМ
.1. Технические характеристьки программпруемых микрокалькуляторов и микро-ЭВМ
лава 2. Основные числениые методы и нх программная реализация
1. Вычисление и табулирование специальных функций
лава 3. Моделн активных приборов для расчета нелинейных и им- пульсных устройств
1. Основные требования к моделям активных приборов при расчетах на микро-ЭВМ
лава 4. Расчет статического режима нелинейных электронных цепей
1. Расчет вольт-амперных характеристик полупроводниковых приборов 2. Расчет нелинейных электронных цепей на постоянном токе
лава 5. Спектратьный и эмергетический анализ нелишейных и им- пульсных устройств
1. Расчет спектра графически и таблично заданных импульеных сигналов 2. Расчет частотных и фазочастотных характеристик четырехполюсников по заданным дереходным характеристикым.

5.3. Расчет спектра методом Берга	72 73 75
Глава 6. Расчет пассивных элементов неличейных и импульсных устройств	76
6.1. Расчет индуктивностей	76 80 81 82
6.4. Расчет емкостей	83 87
Глава 7. Расчет переходных проиессов и переключающих устройств	90
7.1. Расчет переходных процессов в линейных цепях по аналитическим выражениям	90
7.2. Расчет переходных процессов в линейных и нелинейных цепях 1-го порядка численным методом переменных состояния	93
7.6. Расчет ключей на мощных полевых транзисторах 7.7. Расчет переходных процессов прямым численным интегрированием	96 97 100 100 103
7.8. Расчет переходных процессов в линейных и нелинейных резопансных цепях	104
	105 106
теграла суперпозиции	108
Глава 8. Расчет и моделирование релаксационных генераторов	109
8.1. Расчет и моделирование мультивибраторов на туннельном диоде 8.2. Расчет релаксационного генератора на однопереходном транзисторе 8.3 Расчет и моделирование релаксатора на лавинном транзисторе 8.4. Расчет автоколебательных мультивибраторов на интегральных	111
микросхемах	114
Глава 9. Статистическое моделирование и макромоделирование ра-	
· · · · · · · · · · · · · · · · · · ·	120
9.2. Основы статистического моделирования и расчета радиоэлектрон ных устройств (метод Монте-Карло)	120 122
9.3. Расчет основных статистических характеристик	
9.5. Аппроксимация различных зависимостей	128 131
Приложение 1. Библиотека программ программируемого микро- калькулятора «Электроника БЗ-21»	134
Приложение 2. Пакет программ программируемого микрокаль- кулятора «Электроника БЗ-З4»	
Приложение 3. Паког программ микро-ЭВМ «Электроника ДЗ-28- Список литературы	165

Уважаемые читатели, пользующиеся книгой Я. К. Трохименко, Ф. Д. Любича «Радиотехнические расчеты на микрокалькуляторах» (1983)!

Сообщаем перечень замеченных в указанной книге опечаток:

Страница	Номер программы (формулы)	Адрес	Напечатано	Должно быть
39 73 86	20/34 103/34 127/34	08 78	<u>—</u> қип8	÷ КИПВ Погрешности вычисления корней
96 148/34		69 00 88	ИПВ ИПД ИПС = (w_i/F) = = $100(F_0/F$ —1)	возрастают при $q_3 \neq 0$ ИПЗ ИПА ИП6= $(w_i/\Delta w_i)$ = = $1000(F_0/F-1)$